Bayesian geostatistical modelling for mapping schistosomiasis transmission

被引:54
|
作者
Vounatsou, P. [1 ]
Raso, G. [2 ,3 ]
Tanner, M. [1 ]
N'Goran, E. K. [4 ,5 ]
Utzinger, J. [1 ]
机构
[1] Swiss Trop Inst, Dept Epidemiol & Publ Hlth, CH-4002 Basel, Switzerland
[2] Univ Queensland, Sch Populat Hlth, Div Epidemiol & Social Med, Brisbane, Qld 4006, Australia
[3] Queensland Inst Med Res, Mol Parasitol Lab, Brisbane, Qld 4006, Australia
[4] Univ Cocody Abidjan, UFR Biosci, Abidjan 22, Cote Ivoire
[5] Ctr Suisse Rech Sci, Abidjan 01, Cote Ivoire
基金
瑞士国家科学基金会;
关键词
Schistosomiasis; Schistosoma mansoni; Bayesian geostatistics; non-stationarity; overdispersion; zero-inflated model; infection intensity; Cote d'Ivoire; NEGLECTED TROPICAL DISEASES; SPATIAL RISK PREDICTION; DAY-TO-DAY; HELMINTH INFECTIONS; MATHEMATICAL-MODELS; MANSONI INFECTION; SMALL-SCALE; COUNT DATA; PATTERNS; DYNAMICS;
D O I
10.1017/S003118200900599X
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Progress has been made in mapping and predicting the risk of schistosomiasis using Bayesian geostatistical inference. Applications primarily, focused on risk profiling of prevalence rather than infection intensity,, although the latter is particularly important for morbidity control. In this review, the Underlying assumptions used in a study mapping Schistosoma mansoni infection intensity in East Africa are examined. We argue that the assumption of stationarity needs to be relaxed, and that the negative binomial assumption might result in misleading inference because of a high number of excess zeros (individuals Without an infection). We developed a Bayesian geostatistical zero-inflated (ZI) regression model that assumes a non-stationary spatial process. Our model is validated with a high-quality, georeferenced database from western Cote d'Ivoire, consisting of demographic, environmental, parasitological and socio-economic data. Nearly 40% of the 3818 participating schoolchildren were infected with S. mansoni, and the Mean egg count an-long infected children was 162 eggs per gram of stool (EPG), ranging between 24 and 6768 EPG. Compared to a negative binomial and ZI Poisson and negative binomial models, the Bayesian non-stationary ZI negative binomial model showed a better fit to the data. We conclude that geostatistical ZI models produce more accurate maps Of helminth infection intensity, than the spatial negative binomial ones.
引用
收藏
页码:1695 / 1705
页数:11
相关论文
共 50 条
  • [21] Geostatistical space-time mapping of house prices using Bayesian maximum entropy
    Hayunga, Darren K.
    Kolovos, Alexander
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2016, 30 (12) : 2339 - 2354
  • [22] Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data
    Adigun, Abbas B.
    Gajere, Efron N.
    Oresanya, Olusola
    Vounatsou, Penelope
    MALARIA JOURNAL, 2015, 14
  • [23] Bayesian Geostatistical Modelling for Precipitation Data with Nested Anisotropy Measured at Sparse Reference Stations
    Gao X.
    Yuan S.
    Li J.
    Zhao H.
    Xu S.
    Journal of Geo-Information Science, 2022, 24 (08) : 1445 - 1458
  • [24] A new approach to modelling schistosomiasis transmission based on stratified worm burden
    Gurarie, D.
    King, C. H.
    Wang, X.
    PARASITOLOGY, 2010, 137 (13) : 1951 - 1965
  • [25] Effects of agrochemical pollution on schistosomiasis transmission: a systematic review and modelling analysis
    Hoover, Christopher M.
    Rumschlag, Samantha L.
    Strgar, Luke
    Arakala, Arathi
    Gambhir, Manoj
    de Leo, Giulio A.
    Sokolow, Susanne H.
    Rohr, Jason R.
    Remais, Justin, V
    LANCET PLANETARY HEALTH, 2020, 4 (07): : E280 - E291
  • [26] Bayesian Modelling and Mapping of HIV Infection Rate in Thailand
    Meechok, Pathumwadee
    Viwatwongkasem, Chukiat
    Satitvipawee, Pratana
    Sillabutra, Jutatip
    Srihera, Ramidha
    2018 6TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2018,
  • [27] Risk mapping of clonorchiasis in the People's Republic of China: A systematic review and Bayesian geostatistical analysis
    Lai, Ying-Si
    Zhou, Xiao-Nong
    Pan, Zhi-Heng
    Utzinger, Jurg
    Vounatsou, Penelope
    PLOS NEGLECTED TROPICAL DISEASES, 2017, 11 (03):
  • [28] Bayesian geostatistical modelling of stunting in Rwanda: risk factors and spatially explicit residual stunting burden
    Vestine Uwiringiyimana
    Frank Osei
    Sherif Amer
    Antonie Veldkamp
    BMC Public Health, 22
  • [29] Bayesian geostatistical modelling of stunting in Rwanda: risk factors and spatially explicit residual stunting burden
    Uwiringiyimana, Vestine
    Osei, Frank
    Amer, Sherif
    Veldkamp, Antonie
    BMC PUBLIC HEALTH, 2022, 22 (01)
  • [30] Geostatistical Analysis of Mangrove Ecosystem Health: Mapping and Modelling of Sampling Uncertainty Using Kriging
    Parman, Rhyma Purnamasayangsukasih
    Kamarudin, Norizah
    Ibrahim, Faridah Hanum
    Nuruddin, Ahmad Ainuddin
    Omar, Hamdan
    Abdul Wahab, Zulfa
    FORESTS, 2022, 13 (08):