Bayesian geostatistical modelling for mapping schistosomiasis transmission

被引:54
|
作者
Vounatsou, P. [1 ]
Raso, G. [2 ,3 ]
Tanner, M. [1 ]
N'Goran, E. K. [4 ,5 ]
Utzinger, J. [1 ]
机构
[1] Swiss Trop Inst, Dept Epidemiol & Publ Hlth, CH-4002 Basel, Switzerland
[2] Univ Queensland, Sch Populat Hlth, Div Epidemiol & Social Med, Brisbane, Qld 4006, Australia
[3] Queensland Inst Med Res, Mol Parasitol Lab, Brisbane, Qld 4006, Australia
[4] Univ Cocody Abidjan, UFR Biosci, Abidjan 22, Cote Ivoire
[5] Ctr Suisse Rech Sci, Abidjan 01, Cote Ivoire
基金
瑞士国家科学基金会;
关键词
Schistosomiasis; Schistosoma mansoni; Bayesian geostatistics; non-stationarity; overdispersion; zero-inflated model; infection intensity; Cote d'Ivoire; NEGLECTED TROPICAL DISEASES; SPATIAL RISK PREDICTION; DAY-TO-DAY; HELMINTH INFECTIONS; MATHEMATICAL-MODELS; MANSONI INFECTION; SMALL-SCALE; COUNT DATA; PATTERNS; DYNAMICS;
D O I
10.1017/S003118200900599X
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Progress has been made in mapping and predicting the risk of schistosomiasis using Bayesian geostatistical inference. Applications primarily, focused on risk profiling of prevalence rather than infection intensity,, although the latter is particularly important for morbidity control. In this review, the Underlying assumptions used in a study mapping Schistosoma mansoni infection intensity in East Africa are examined. We argue that the assumption of stationarity needs to be relaxed, and that the negative binomial assumption might result in misleading inference because of a high number of excess zeros (individuals Without an infection). We developed a Bayesian geostatistical zero-inflated (ZI) regression model that assumes a non-stationary spatial process. Our model is validated with a high-quality, georeferenced database from western Cote d'Ivoire, consisting of demographic, environmental, parasitological and socio-economic data. Nearly 40% of the 3818 participating schoolchildren were infected with S. mansoni, and the Mean egg count an-long infected children was 162 eggs per gram of stool (EPG), ranging between 24 and 6768 EPG. Compared to a negative binomial and ZI Poisson and negative binomial models, the Bayesian non-stationary ZI negative binomial model showed a better fit to the data. We conclude that geostatistical ZI models produce more accurate maps Of helminth infection intensity, than the spatial negative binomial ones.
引用
收藏
页码:1695 / 1705
页数:11
相关论文
共 50 条
  • [1] Predictive risk mapping of schistosomiasis in Brazil using Bayesian geostatistical models
    Scholte, Ronaldo G. C.
    Gosoniu, Laura
    Malone, John B.
    Chammartin, Frederique
    Utzinger, Juerg
    Vounatsou, Penelope
    ACTA TROPICA, 2014, 132 : 57 - 63
  • [2] Geostatistical modelling of schistosomiasis prevalence
    Grimes, Jack E. T.
    Templeton, Michael R.
    LANCET INFECTIOUS DISEASES, 2015, 15 (08): : 869 - 870
  • [3] Bayesian modelling of geostatistical malaria risk data
    Gosoniu, L.
    Vounatsou, P.
    Sogoba, N.
    Smith, T.
    GEOSPATIAL HEALTH, 2006, 1 (01) : 127 - 139
  • [4] Mapping and prediction of schistosomiasis in Nigeria using compiled survey data and Bayesian geospatial modelling
    Ekpo, Uwem F.
    Huerlimann, Eveline
    Schur, Nadine
    Oluwole, Akinola. S.
    Abe, Eniola M.
    Mafe, Margaret A.
    Nebe, Obiageli J.
    Isiyaku, Sunday
    Olamiju, Francisca
    Kadiri, Mukaila
    Poopola, Temitope O. S.
    Braide, Eka I.
    Saka, Yisa
    Mafiana, Chiedu F.
    Kristensen, Thomas K.
    Utzinger, Juerg
    Vounatsou, Penelope
    GEOSPATIAL HEALTH, 2013, 7 (02) : 355 - 366
  • [5] Bayesian geostatistical modelling with informative sampling locations
    Pati, D.
    Reich, B. J.
    Dunson, D. B.
    BIOMETRIKA, 2011, 98 (01) : 35 - 48
  • [6] Disease mapping in veterinary epidemiology: a Bayesian geostatistical approach
    Biggeri, A
    Dreassi, E
    Catelan, D
    Rinaldi, L
    Lagazio, C
    Cringoli, G
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2006, 15 (04) : 337 - 352
  • [7] Mapping Malaria Risk in Bangladesh Using Bayesian Geostatistical Models
    Reid, Heidi
    Haque, Ubydul
    Clements, Archie C. A.
    Tatem, Andrew J.
    Vallely, Andrew
    Ahmed, Syed Masud
    Islam, Akramul
    Haque, Rashidul
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2010, 83 (04): : 861 - 867
  • [8] Modelling the spread of schistosomiasis in humans with environmental transmission
    Ronoh, Marilyn
    Chirove, Faraimunashe
    Pedro, Sansao A.
    Tchamga, Milaine Sergine Seuneu
    Madubueze, Chinwendu Emilian
    Madubueze, Sunday C.
    Addawe, Joel
    Mwamtobe, Peter Mpasho
    Mbra, Kouassi Richard
    APPLIED MATHEMATICAL MODELLING, 2021, 95 : 159 - 175
  • [9] Revisiting regulating mechanisms for modelling schistosomiasis transmission
    Malizia, Veronica
    Giardina, Federica
    Roes, Kit
    de Vlas, Sake
    TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2023, 28 : 220 - 220
  • [10] MODELLING THE IMPACT OF VACCINATION STRATEGIES ON THE TRANSMISSION OF SCHISTOSOMIASIS
    Kura, Klodeta
    Truscott, James
    Toor, Jaspreet
    Anderson, Roy
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 373 - 373