Laser diodes employing GaAs1-xBix/GaAs1-yPy quantum well active regions

被引:8
|
作者
Kim, Honghyuk [1 ]
Guan, Yingxin [2 ]
Forghani, Kamran [1 ,3 ]
Kuech, Thomas F. [3 ]
Mawst, Luke J. [1 ]
机构
[1] Univ Wisconsin Madison, Dept Elect & Comp Engn, Madison, WI 53706 USA
[2] Univ Wisconsin Madison, Dept Mat Sci & Engn, Madison, WI 53706 USA
[3] Univ Wisconsin Madison, Dept Chem & Biol Engn, Madison, WI 53706 USA
关键词
metal organic vapor phase epitaxy; bismuth compounds; semiconducting III-V materials; laser diodes; in situ; monitoring; MOLECULAR-BEAM EPITAXY; VAPOR-PHASE EPITAXY; SOLAR-CELLS; BAND-GAP; GROWTH; GAAS; EFFICIENCY; PRECURSORS; MOVPE;
D O I
10.1088/1361-6641/aa729b
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Laser diodes employing strain-compensated GaAs1-xBix/GaAs1-yPy quantum well (QW) active regions were grown by metalorganic vapor phase epitaxy (MOVPE). High resolution x-ray diffraction, room temperature photoluminescence, and in situ optical reflectance monitoring during the MOVPE growth provided valuable feedback for the optimization of the material growth conditions. In addition, the post-growth in situ thermal annealing was employed to improve the radiative efficiency of the GaAs1-xBix/GaAs1-yPy QW structures. Wide ridge waveguide lasers with GaAs barriers exhibited high threshold current densities (J(th) similar to 8 kA cm(-2)), excessive band-filling, and carrier leakage at room temperature, resulting in the lasing from a high energy transition. By contrast, devices employing GaAs1-yPy barriers exhibited significantly lower threshold current densities (J(th) similar to 5.9 kA cm(-2)), and longer wavelength QW emission, presumably as a result of improved active region carrier confinement. Devices with GaAs0.8P0.2 barriers after the post-growth thermal annealing exhibited further reduced threshold current density (J(th) similar to 4.1 kA cm(-2)).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Strain-compensated GaAs1-yPy/GaAs1-zBiz/GaAs1-yPy quantum wells for laser applications
    Kim, H.
    Forghani, K.
    Guan, Y.
    Luo, G.
    Anand, A.
    Morgan, D.
    Kuech, T. F.
    Mawst, L. J.
    Lingley, Z. R.
    Foran, B. J.
    Sin, Y.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (09)
  • [2] GaAs1-xBix light emitting diodes
    Lewis, R. B.
    Beaton, D. A.
    Lu, Xianfeng
    Tiedje, T.
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (07) : 1872 - 1875
  • [3] GAAS1-YPY HETEROJUNCTION LASERS
    CHIN, R
    HOLONYAK, N
    SHICHIJO, H
    GROVES, WO
    KEUNE, DL
    ROSSI, JA
    JOURNAL OF APPLIED PHYSICS, 1977, 48 (09) : 3991 - 3993
  • [4] Polarization resolved photoluminescence in GaAs1-xBix/GaAs quantum wells
    Balanta, M. A. G.
    Orsi Gordo, V.
    Carvalho, A. R. H.
    Puustinen, J.
    Alghamdi, H. M.
    Henini, M.
    Galeti, H. V. A.
    Guina, M.
    Galvao Gobato, Y.
    JOURNAL OF LUMINESCENCE, 2017, 182 : 49 - 52
  • [5] Absorption Characteristics of GaAs1-xBix/GaAs Diodes in the Near-Infrared
    Hunter, Chris J.
    Bastiman, Faebian
    Mohmad, Abdul R.
    Richards, Robert
    Ng, Jo Shien
    Sweeney, Stephen J.
    David, John P. R.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (23) : 2191 - 2194
  • [6] NONLINEAR AS(P) INCORPORATION IN GAAS1-YPY ON GAAS AND INAS1-YPY ON INP
    CUNNINGHAM, JE
    WILLIAMS, MD
    PATHAK, RN
    JAN, W
    JOURNAL OF CRYSTAL GROWTH, 1995, 150 (1-4) : 492 - 496
  • [7] Photoluminescence investigation of GaAs1-xBix/GaAs heterostructures
    Pacebutas, Vaidas
    Butkute, Renata
    Cechavicius, Bronius
    Kavaliauskas, Julius
    Krotkus, Arunas
    THIN SOLID FILMS, 2012, 520 (20) : 6415 - 6418
  • [8] Recombination mechanisms and band alignment of GaAs1-xBix/GaAs light emitting diodes
    Hossain, N.
    Marko, I. P.
    Jin, S. R.
    Hild, K.
    Sweeney, S. J.
    Lewis, R. B.
    Beaton, D. A.
    Tiedje, T.
    APPLIED PHYSICS LETTERS, 2012, 100 (05)
  • [9] Carrier-phonon coupling in GaAs1-xBix/GaAs quantum wells
    Chernikov, A.
    Bornwasser, V.
    Koch, M.
    Koch, S. W.
    Lu, X.
    Johnson, S. R.
    Beaton, D. A.
    Tiedje, T.
    Chatterjee, S.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (08)
  • [10] Photogenerated plasmons in GaAs1-xBix
    Yoon, S.
    Seong, M. J.
    Fluegel, B.
    Mascarenhas, A.
    Tixier, S.
    Tiedje, T.
    APPLIED PHYSICS LETTERS, 2007, 91 (08)