STRUCTURAL ANALYSIS OF A DIRECT HEATED TUBULAR SOLAR RECEIVER FOR SUPERCRITICAL CO2 BRAYTON CYCLE

被引:0
|
作者
Ortega, Jesus D. [1 ]
Christian, Joshua M. [1 ]
Ho, Clifford K. [1 ]
机构
[1] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA
关键词
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Closed-loop super-critical carbon dioxide (sCO(2)) Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. However, high temperatures (650 - 700 degrees C) and pressures (20 - 25 MPa) are required in the solar receiver. In this study, an extensive material review was performed along with a tube size optimization following the ASME Boiler and Pressure Vessel Code and B31.1 and B313.3 codes respectively. Subsequently, a thermal-structural model was developed using ANSYS Fluent and Structural to design and analyze the tubular receiver that could provide the heat input for a similar to 2 MWth plant. The receiver will be required to provide an outlet temperature of 650 degrees C (at 25 MPa) or 700 degrees C (at 20 MPa). The induced thermal stresses were applied using a temperature gradient throughout the tube while a constant pressure load was applied on the inner wall. The resulting stresses have been validated analytically using constant surface temperatures. The cyclic loading analysis was performed using the Larson-Miller creep model in nCode Design Life to define the structural integrity of the receiver over the desired lifetime of similar to 10,000 cycles. The results have shown that the stresses induced by the thermal and pressure load can be withstood by the tubes selected. The creep-fatigue analysis displayed the damage accumulation due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. As a result, a complete model to verify the structural integrity and thermal performance of a high temperature and pressure receiver has been developed. This work will serve as reference for future design and evaluation of future direct and indirect tubular receivers.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Researchers Develop Supercritical CO2 Brayton Cycle Turbines
    不详
    [J]. POWER, 2011, 155 (05) : 12 - +
  • [22] Research on the Development of the Supercritical CO2 Dual Brayton Cycle
    Baik, Young-Jin
    Na, Sun Ik
    Cho, Junhyun
    Shin, Hyung-Ki
    Lee, Gilbong
    [J]. TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2016, 40 (10) : 673 - 679
  • [23] Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
    Conboy, Thomas
    Wright, Steven
    Pasch, James
    Fleming, Darryn
    Rochau, Gary
    Fuller, Robert
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2012, 134 (11):
  • [24] THERMAL ENERGY STORAGE FOR THE SUPERCRITICAL CO2 BRAYTON CYCLE
    Bueno, P. C.
    Bates, L.
    Anderson, R.
    Bindra, H.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 9, 2015,
  • [25] Thermal-hydraulic-structural analysis and optimization of supercritical CO2 solar tower receiver
    Wang, Yanjuan
    Li, Yi
    Zhu, Zheng
    Chen, Zhewen
    Xu, Jinliang
    [J]. ENERGY, 2024, 293
  • [26] Analysis and Performance Optimization of Supercritical CO2 Recompression Brayton Cycle Coupled Organic Rankine Cycle Based on Solar Tower
    Yu, Tingfang
    Song, Yuxi
    [J]. JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (05):
  • [27] Thermal Performance Analysis of a Direct-Heated Recompression Supercritical Carbon Dioxide Brayton Cycle Using Solar Concentrators
    Wang, Jinping
    Wang, Jun
    Lund, Peter D.
    Zhu, Hongxia
    [J]. ENERGIES, 2019, 12 (22)
  • [28] Power Generation via an Autonomous Solar Tower Coupled to a Supercritical CO2 Brayton Cycle
    Beyoud, Abdelkader
    Hassanain, Najem
    Bouhaouss, Ahmed
    [J]. INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2019, 9 (02): : 1019 - 1031
  • [29] Thermoeconomic analysis of a CO2 plume geothermal and supercritical CO2 Brayton combined cycle using solar energy as auxiliary heat source
    Qiao, Zongliang
    Cao, Yue
    Li, Peiyu
    Wang, Xingchao
    Romero, Carlos E.
    Pan, Lehua
    [J]. JOURNAL OF CLEANER PRODUCTION, 2020, 256
  • [30] Recent trends of supercritical CO2 Brayton cycle: Bibliometric analysis and research review
    Yu, Aofang
    Su, Wen
    Lin, Xinxing
    Zhou, Naijun
    [J]. NUCLEAR ENGINEERING AND TECHNOLOGY, 2021, 53 (03) : 699 - 714