Non-Bloch band theory in bosonic Bogoliubov-de Gennes systems

被引:42
|
作者
Yokomizo, Kazuki [1 ]
Murakami, Shuichi [1 ,2 ]
机构
[1] Tokyo Inst Technol, Dept Phys, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
[2] Tokyo Inst Technol, TIES, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
关键词
BOSE-EINSTEIN CONDENSATION;
D O I
10.1103/PhysRevB.103.165123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent research, it has been shown that non-Hermitian systems exhibit sensitivity to boundaries, and it is caused by the non-Hermitian skin effect. In this work, we construct the non-Bloch band theory in bosonic Bogoliubov-de Gennes (BdG) systems. From our theory, we can calculate the generalized Brillouin zone and the energy spectrum in such systems with open boundary conditions in the thermodynamic limit, and we can thus discuss its non-Hermitian nature, despite Hermiticity of an original Hamiltonian. In fact, we find that the bosonic Kitaev-Majorana chain exhibits rich aspects of the non-Hermitian skin effect, such as instability against infinitesimal perturbations and reentrant behavior, in terms of the non-Bloch band theory. This result indicates that our theory is powerful tool for studying non-Hermitian nature in bosonic BdG systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Condition for emergence of complex eigenvalues in the Bogoliubov-de Gennes equations
    Nakamura, Y.
    Mine, M.
    Okumura, M.
    Yamanaka, Y.
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [22] Krein-unitary Schrieffer-Wolff transformation and band touchings in bosonic Bogoliubov-de Gennes and other Krein-Hermitian Hamiltonians
    Massarelli, Geremia
    Khait, Ilia
    Paramekanti, Arun
    PHYSICAL REVIEW B, 2022, 106 (14)
  • [23] Non-Bloch band theory of generalized eigenvalue problems
    Yokomizo, Kazuki
    Yoda, Taiki
    Ashida, Yuto
    PHYSICAL REVIEW B, 2024, 109 (11)
  • [24] Symmetry-based indicators for topological Bogoliubov-de Gennes Hamiltonians
    Geier, Max
    Brouwer, Piet W.
    Trifunovic, Luka
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [25] Reformulation of Bogoliubov-de Gennes equations for a d-wave superconductor
    Zhu, JX
    PHYSICA C, 2000, 340 (2-3): : 230 - 234
  • [26] Exploring the vortex phase diagram of Bogoliubov-de Gennes disordered superconductors
    Fan, Bo
    Garcia-Garcia, Antonio Miguel
    SCIPOST PHYSICS, 2023, 15 (05):
  • [27] Electron-hole coherent states for the Bogoliubov-de Gennes equation
    Gnutzmann, Sven
    Kus, Marek
    Langham-Lopez, Jordan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (08)
  • [28] Exact Bogoliubov-de Gennes solutions for gray-soliton backgrounds
    Walczak, P. B.
    Anglin, J. R.
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [29] Bogoliubov-de Gennes versus quasiclassical description of Josephson layered structures
    Ozana, M
    Shelankov, A
    Tobiska, J
    PHYSICAL REVIEW B, 2002, 66 (05)
  • [30] Anderson's "theorem" and Bogoliubov-de Gennes equations for surfaces and impurities
    Tanaka, K
    Marsiglio, F
    PHYSICA C, 2000, 341 : 179 - 180