Least totient in a residue class

被引:10
|
作者
Friedlander, John B. [1 ]
Shparlinski, Igor E.
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/blms/bdm027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given residue class a (mod m) with gcd(a, m) = 1, upper bounds are obtained on the smallest value of n with phi(n) equivalent to a (mod m). Here, as usual phi(n) denotes the Euler function. These bounds complement a result of W. Narkiewicz on the asymptotic uniformity of distribution of values of the Euler function in reduced residue classes modulo m. Some discussion and results are also given for classes with gcd(a, m) > 1, in which case such n do not always exist, and also on the related problem for 'cototients'.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 50 条