Nilpotency in left semi-braces

被引:4
|
作者
Catino, Francesco [1 ]
Cedo, Ferran [2 ]
Stefanelli, Paola [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio Giorgi, Via Provinciale, I-73100 Arnesano, Lecce, Italy
[2] Univ Autonoma Barcelona, Dept Matematiques, E-08193 Barcelona, Spain
关键词
Quantum Yang-Baxter equation; Set-theoretical solution; Brace; Semi-brace; Skew brace; SET-THEORETICAL SOLUTIONS; SKEW LEFT BRACES; BAXTER; PRODUCT; RINGS;
D O I
10.1016/j.jalgebra.2022.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce left and right series of left semi-braces. This allows to define left and right nilpotent left semi-braces. We study the structure of such semi-braces and generalize some results, known for skew left braces, to left semi-braces. We study the structure of left semi-braces B such that the set of additive idempotents E is an ideal of B. Finally we introduce the concept of a nilpotent left semi-brace and we show that the multiplicative group of such semi-braces is nilpotent. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:128 / 161
页数:34
相关论文
共 50 条
  • [41] Semi-active friction system with amplifying braces for control of MDOF structures
    Gluck, J
    Ribakov, Y
    STRUCTURAL DESIGN OF TALL BUILDINGS, 2001, 10 (02): : 107 - 120
  • [42] Seismic control of civil structures utilizing semi-active MR braces
    Hiemenz, GJ
    Choi, YT
    Wereley, NM
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2003, 18 (01) : 31 - 44
  • [43] Constructing skew left braces whose additive group has trivial centre
    Ballester-Bolinches, Adolfo
    Esteban-Romero, Ramon
    Jimenez-Seral, Paz
    Perez-Calabuig, Vicent
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [44] Soluble skew left braces and soluble solutions of the Yang-Baxter equation
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    Jimenez-Seral, P.
    Perez-Calabuig, V.
    ADVANCES IN MATHEMATICS, 2024, 455
  • [45] Optimal placement of braces for steel frames with semi-rigid joints by scatter search
    Hagishita, T.
    Ohsaki, M.
    COMPUTERS & STRUCTURES, 2008, 86 (21-22) : 1983 - 1993
  • [46] Solutions of the Yang-Baxter equation associated to skew left braces, with applications to racks
    Bachiller, David
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (08)
  • [47] Rota-Baxter groups, skew left braces, and the Yang-Baxter equation
    Bardakov, Valeriy G.
    Gubarev, Vsevolod
    JOURNAL OF ALGEBRA, 2022, 596 : 328 - 351
  • [48] Skew left braces and isomorphism problems for Hopf-Galois structures on Galois extensions
    Koch, Alan
    Truman, Paul J.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (05)
  • [49] Skew left braces and 2-reductive solutions of the Yang-Baxter equation
    Jedlicka, Premysl
    Pilitowska, Agata
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (04)
  • [50] Asymmetric product of left braces and simplicity; new solutions of the Yang-Baxter equation
    Bachiller, D.
    Cedo, F.
    Jespers, E.
    Okninski, J.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (08)