Convex real projective structures and Weil's local rigidity theorem

被引:0
|
作者
Kim, Inkang [1 ]
Zhang, Genkai [2 ]
机构
[1] KIAS, Sch Math, Heogiro 85, Seoul 130722, South Korea
[2] Gothenburg Univ, Chalmers Univ Technol & Math Sci, Math Sci, SE-41296 Gothenburg, Sweden
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 116卷
关键词
Zariski tangent space; Real projective structure; Weil's local rigidity; LIE-GROUPS; SURFACES; SPACE;
D O I
10.1016/j.matpur.2018.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an n-dimensional real hyperbolic manifold M, we calculate the Zariski tangent space of a character variety chi(pi(1)(M), SL(n +1, R), n > 2 at Fuchsian locus to show that the tangent space consists of cubic forms. Furthermore we prove the Weil's local rigidity theorem for uniform hyperbolic lattices using real projective structures. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [41] On SS-rigid groups and A. Weil's criterion for local rigidity. I
    A. S. Rapinchuk
    manuscripta mathematica, 1998, 97 : 529 - 543
  • [42] Weil's Converse Theorem with Poles
    Booker, Andrew R.
    Krishnamurthy, M.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (19) : 5328 - 5339
  • [43] A RIGIDITY FOR REAL HYPERSURFACES IN A COMPLEX PROJECTIVE-SPACE
    SUH, YJ
    TAKAGI, R
    TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (04) : 501 - 507
  • [44] The Selberg-Weil-Kobayashi rigidity theorem: The rank one solvable case
    Baklouti, A.
    Elaloui, N.
    Kedim, I.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (10)
  • [45] CONVEX COCOMPACT ACTIONS IN REAL PROJECTIVE GEOMETRY
    Danciger, Jeffrey
    Gueritaud, Francois
    Kassel, Fanny
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2024, 57 (06):
  • [46] On Mason's Rigidity Theorem
    Chrusciel, Piotr T.
    Tod, Paul
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (01) : 1 - 29
  • [47] On Mason’s Rigidity Theorem
    Piotr T. Chruściel
    Paul Tod
    Communications in Mathematical Physics, 2009, 285
  • [48] Continuity of the SRB entropy of convex projective structures
    Foulon, Patrick
    Kim, Inkang
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (08) : 2369 - 2381
  • [49] Moduli spaces of convex projective structures on surfaces
    Fock, V. V.
    Goncharov, A. B.
    ADVANCES IN MATHEMATICS, 2007, 208 (01) : 249 - 273
  • [50] Deforming real projective structures
    Gallo, DM
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1997, 22 (01): : 3 - 14