Hierarchical-matrix preconditioners for parabolic optimal control problems

被引:0
|
作者
Oliveira, Suely [1 ]
Yang, Fang [1 ]
机构
[1] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
关键词
hierarchical matrices; multilevel methods; parabolic optimal control problems;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Hierarchical (H)-matrices approximate full or sparse matrices using a hierarchical data sparse format. The corresponding R-matrix arithmetic reduces the time complexity of the approximate H-matrix operators to almost optimal while maintains certain accuracy. In this paper, we represent a scheme to solve the saddle point system arising from the control of parabolic partial differential equations by using H-matrix LU-factors as preconditioners in iterative methods. The experiment shows that the H-matrix preconditioners are effective and speed up the convergence of iterative methods.
引用
收藏
页码:221 / +
页数:2
相关论文
共 50 条