A high-order spectral method for the multi-term time-fractional diffusion equations

被引:131
|
作者
Zheng, M. [1 ]
Liu, F. [2 ]
Anh, V. [2 ]
Turner, I. [2 ]
机构
[1] Huzhou Univ, Sch Math Sci, Huzhou 313000, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
关键词
Multi-term time-fractional diffusion equation; Space-time spectral method; Riemann-Liouville derivative; Caputo fractional derivative; BOUNDARY-VALUE-PROBLEMS; VARIABLE-ORDER; SPACE; APPROXIMATIONS;
D O I
10.1016/j.apm.2015.12.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The multi-term time-fractional diffusion equation is a useful tool in the modeling of complex systems. This paper aims to develop a high order numerical method for solving multi term time-fractional diffusion equations. Based on the space-time spectral method, a high order scheme is proposed in the present paper. In this method, the Legendre polynomials are adopted in temporal discretization and the Fourier-like basis functions are constructed for the spatial discretization. Such a space-time spectral method possesses high efficiency and exponential decay in both time and space directions. Rigorous proofs are given here for the stability and convergence of the scheme. Numerical results show good agreement with the theoretical analysis. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:4970 / 4985
页数:16
相关论文
共 50 条
  • [41] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    [J]. Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [42] A STRONG POSITIVITY PROPERTY AND A RELATED INVERSE SOURCE PROBLEM FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS
    胡利
    李志远
    杨晓娜
    [J]. Acta Mathematica Scientia., 2024, 44 (05) - 2040
  • [43] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    [J]. NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301
  • [44] A posteriori error estimates of spectral Galerkin methods for multi-term time fractional diffusion equations
    Tang, Bo
    Chen, Yanping
    Lin, Xiuxiu
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 120
  • [45] High order compact difference scheme for solving the time multi-term fractional sub-diffusion equations
    Ren, Lei
    [J]. AIMS MATHEMATICS, 2022, 7 (05): : 9172 - 9188
  • [46] A strong positivity property and a related inverse source problem for multi-term time-fractional diffusion equations
    Hu, Li
    Li, Zhiyuan
    Yang, Xiaona
    [J]. ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 2019 - 2040
  • [47] Finite element multigrid method for multi-term time fractional advection diffusion equations
    Bu, Weiping
    Liu, Xiangtao
    Tang, Yifa
    Yang, Jiye
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2015, 6 (01)
  • [48] Coupling of the improved singular boundary method and dual reciprocity method for multi-term time-fractional mixed diffusion-wave equations
    Safari, Farzaneh
    Chen, Wen
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1594 - 1607
  • [49] Classical unique continuation property for multi-term time-fractional evolution equations
    Lin, Ching-Lung
    Nakamura, Gen
    [J]. MATHEMATISCHE ANNALEN, 2023, 385 (1-2) : 551 - 574
  • [50] OPTIMAL INITIAL VALUE CONTROL FOR THE MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATION
    Veklych, R. A.
    Semenov, V. V.
    Lyashko, S. I.
    [J]. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2016, (06): : 100 - 103