An optimal control problem of the 3D viscous Camassa-Holm equations

被引:3
|
作者
Cung The Anh [1 ]
Dang Thanh Son [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
[2] Telecommun Univ, Fdn Sci Fac, Nha Trang, Khanh Hoa, Vietnam
关键词
viscous Camassa-Holm equations; optimal control; existence; necessary optimality condition; sufficient optimality condition; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; DATA ASSIMILATION; EXISTENCE; DECAY;
D O I
10.1080/02331934.2019.1696340
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study an optimal control problem of the three-dimensional viscous Camassa-Holm equations in bounded domains with Dirichlet boundary conditions and a quadratic objective functional. We first prove the existence of an optimal solution. Then we establish the first-order necessary and second-order sufficient optimality conditions.
引用
收藏
页码:3 / 25
页数:23
相关论文
共 50 条
  • [41] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Lu Zhao
    Changzheng Qu
    Chinese Annals of Mathematics, Series B, 2020, 41 : 407 - 418
  • [42] The Cauchy problem for a generalized Camassa-Holm equation
    Mi, Yongsheng
    Liu, Yue
    Guo, Boling
    Luo, Ting
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (10) : 6739 - 6770
  • [43] The Pullback Attractors for the Nonautonomous Camassa-Holm Equations
    Wu, Delin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [44] EMBEDDING CAMASSA-HOLM EQUATIONS IN INCOMPRESSIBLE EULER
    Natale, Andrea
    Vialard, Francois-Xavier
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (02): : 205 - 223
  • [45] Numerical study of fractional Camassa-Holm equations
    Klein, Christian
    Oruc, Goksu
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 457
  • [46] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Zhao, Lu
    Qu, Changzheng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2020, 41 (03) : 407 - 418
  • [47] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Lu ZHAO
    Changzheng QU
    ChineseAnnalsofMathematics,SeriesB, 2020, (03) : 407 - 418
  • [48] LOCAL AND GLOBAL ANALYTICITY FOR μ-CAMASSA-HOLM EQUATIONS
    Yamane, Hideshi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (07) : 4307 - 4340
  • [49] On the isospectral problem of the dispersionless Camassa-Holm equation
    Eckhardt, Jonathan
    Teschl, Gerald
    ADVANCES IN MATHEMATICS, 2013, 235 : 469 - 495
  • [50] Asymptotics of Regular Solutions to the Camassa-Holm Problem
    Kashchenko, S. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (02) : 258 - 271