The 1-Yamabe equation on graphs

被引:15
|
作者
Ge, Huabin [1 ]
Jiang, Wenfeng [2 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[2] Sun Yet Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
关键词
1-Laplacian; Yamabe equation; graphs; KAZDAN-WARNER EQUATION; CONFORMAL DEFORMATION; 1-LAPLACIAN; EXISTENCE; CONSTANT; SPECTRUM;
D O I
10.1142/S0219199718500402
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following 1-Yamabe equation on connected finite graphs Delta(1)u + gSgn (u) = h vertical bar u vertical bar(alpha-1) Sgn (u), where Delta(1) is the discrete 1-Laplacian, alpha > 1 and g, h > 0 are known. We show that the above 1-Yamabe equation always has a nontrivial solution u >= 0, u not equal 0.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] GRADIENT ESTIMATES FOR YAMABE TYPE EQUATION ON GRAPHS
    Zhao, Liang
    Sun, Chengcui
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 2275 - 2283
  • [2] Yamabe equations on infinite graphs
    Ge, Huabin
    Jiang, Wenfeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) : 885 - 890
  • [3] Yamabe type equations on graphs
    Grigor'yan, Alexander
    Lin, Yong
    Yang, Yunyan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) : 4924 - 4943
  • [4] Multipeak Solutions for the Yamabe Equation
    Rey, Carolina A.
    Ruiz, Juan Miguel
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1180 - 1222
  • [5] Multipeak Solutions for the Yamabe Equation
    Carolina A. Rey
    Juan Miguel Ruiz
    The Journal of Geometric Analysis, 2021, 31 : 1180 - 1222
  • [6] Asymptotic Expansions of Solutions of the Yamabe Equation and theσk-Yamabe Equation near Isolated Singular Points
    Han, Qing
    Li, Xiaoxiao
    Li, Yichao
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (09) : 1915 - 1970
  • [7] Finite energy solutions to the Yamabe equation
    Zhang, QS
    GEOMETRIAE DEDICATA, 2003, 101 (01) : 153 - 165
  • [8] Finite Energy Solutions to the Yamabe Equation
    Qi S. Zhang
    Geometriae Dedicata, 2003, 101 : 153 - 165
  • [9] On nodal solutions of the Yamabe equation on products
    Petean, Jimmy
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (10) : 1395 - 1401
  • [10] Optimal pinwheel partitions for the Yamabe equation
    Clapp, Monica
    Faya, Jorge
    Saldana, Alberto
    NONLINEARITY, 2024, 37 (10)