A CHARACTERIZATION OF UNIFORM PRO-p GROUPS

被引:5
|
作者
Klopsch, Benjamin [1 ]
Snopce, Ilir [2 ]
机构
[1] Univ Dusseldorf, Math Inst, D-40225 Dusseldorf, Germany
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-20785050 Rio De Janeiro, RJ, Brazil
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2014年 / 65卷 / 04期
关键词
POWER-STRUCTURE; SUBGROUPS;
D O I
10.1093/qmath/hau005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we propose and supply evidence for the following conjecture, aimed at characterizing uniform pro-p groups. Suppose that pa parts per thousand yen3 and let G be a torsion-free pro-p group of finite rank. Then G is uniform if and only if its minimal number of generators is equal to the dimension of G as a p-adic manifold, i.e. d(G) = dim(G). In particular, we prove that the assertion is true whenever G is soluble or p > dim(G).
引用
收藏
页码:1277 / 1291
页数:15
相关论文
共 50 条
  • [31] Locally pro-p contraction groups are nilpotent
    Gloeckner, Helge
    Willis, George A.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 781 : 85 - 103
  • [32] On small waist pairs in pro-p groups
    Gavioli, Norberto
    Legarreta, Leire
    Ruscitti, Marco
    Scoppola, Carlo Maria
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02): : 263 - 272
  • [33] Homological finiteness conditions for pro-p groups
    King, JD
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4969 - 4991
  • [34] ON PRO-p LINK GROUPS OF NUMBER FIELDS
    Mizusawa, Yasushi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7225 - 7254
  • [35] Free-by-Demushkin pro-p groups
    Kochloukova, DH
    Zalesskii, P
    MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (04) : 731 - 739
  • [36] Groups with the same cohomology as their pro-p completions
    Lorensen, Karl
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (01) : 6 - 14
  • [37] Small maximal pro-p Galois groups
    Efrat, I
    MANUSCRIPTA MATHEMATICA, 1998, 95 (02) : 237 - 249
  • [38] Pro-p galois groups of rank ≤4
    Jochen Koenigsmann
    manuscripta mathematica, 1998, 95 (1) : 251 - 271
  • [39] Mild pro-p groups and the Koszulity conjectures
    Minac, J.
    Pasini, F. W.
    Quadrelli, C.
    Tan, N. D.
    EXPOSITIONES MATHEMATICAE, 2022, 40 (03) : 432 - 455
  • [40] Pro-p groups that act on profinite trees
    Ribes, Luis
    JOURNAL OF GROUP THEORY, 2008, 11 (01) : 75 - 93