An involution for symmetry of hook length and part length of pointed partitions

被引:0
|
作者
Shin, Heesung [1 ]
Zeng, Jiang [1 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, UMR 5208, CNRS, F-69622 Villeurbanne, France
关键词
Involution; Symmetry; Super-symmetry; Hook length; Part length; Partitions; Bijection;
D O I
10.1016/j.disc.2010.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A pointed partition of n is a pair (lambda, v), where lambda is a partition of n and v is a cell in its Ferrers diagram. In this paper, an involution on pointed partitions of n exchanging hook length and part length is constructed. This gives a bijective proof of a recent result of Bessenrodt and Han (2009) [4]. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1633 / 1639
页数:7
相关论文
共 50 条
  • [31] Clavicular Length: The Assumption of Symmetry
    Cunningham, Brian P.
    McLaren, Alex
    Richardson, Michael
    McLemore, Ryan
    ORTHOPEDICS, 2013, 36 (03) : E343 - E347
  • [32] Effect of hook subunit concentration on assembly and control of length of the flagellar hook of Salmonella
    Muramoto, K
    Makishima, S
    Aizawa, S
    Macnab, RM
    JOURNAL OF BACTERIOLOGY, 1999, 181 (18) : 5808 - 5813
  • [33] The minimum length of a base for the symmetric group acting on partitions
    Benbenishty, Carmit
    Cohen, Jonathan A.
    Niemeyer, Alice C.
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (06) : 1575 - 1581
  • [34] Ordered partitions avoiding a permutation pattern of length 3
    Chen, William Y. C.
    Dai, Alvin Y. L.
    Zhou, Robin D. P.
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 416 - 424
  • [35] Bilabelled increasing trees and hook-length formulae
    Kuba, Markus
    Panholzer, Alois
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (02) : 248 - 258
  • [36] On conjectures regarding the Nekrasov–Okounkov hook length formula
    Bernhard Heim
    Markus Neuhauser
    Archiv der Mathematik, 2019, 113 : 355 - 366
  • [37] Hook length biases and general linear partition inequalities
    Cristina Ballantine
    Hannah E. Burson
    William Craig
    Amanda Folsom
    Boya Wen
    Research in the Mathematical Sciences, 2023, 10
  • [38] Hook Length Polynomials for Plane Forests of a Certain Type
    Fu Liu
    Annals of Combinatorics, 2009, 13 : 315 - 322
  • [39] The hook-length formula and generalised Catalan numbers
    Griffiths, Martin
    Lord, Nick
    MATHEMATICAL GAZETTE, 2011, 95 (532): : 23 - 30
  • [40] Flagellar Hook Length Is Controlled by a Secreted Molecular Ruler
    Hughes, Kelly T.
    JOURNAL OF BACTERIOLOGY, 2012, 194 (18) : 4793 - 4796