A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity

被引:32
|
作者
Boiveau, Thomas [1 ]
Burman, Erik [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Nitsche method; compressible elasticity; incompressible elasticity; stabilized finite element methods; Korn's inequality;
D O I
10.1093/imanum/drv042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stability of the nonsymmetric version of the Nitsche method without penalty for compressible and incompressible elasticity. For the compressible case we prove convergence of the error in the H-1-and L-2-norms. In the incompressible case we use a Galerkin least squares pressure stabilization and we prove convergence in the H-1-norm for the velocity and convergence of the pressure in the L-2-norm.
引用
收藏
页码:770 / 795
页数:26
相关论文
共 50 条
  • [1] A PENALTY-FREE NONSYMMETRIC NITSCHE-TYPE METHOD FOR THE WEAK IMPOSITION OF BOUNDARY CONDITIONS
    Burman, Erik
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (04) : 1959 - 1981
  • [2] Penalty-Free Nitsche Method for Interface Problems
    Boiveau, Thomas
    Burman, Erik
    Claus, Susanne
    [J]. GEOMETRICALLY UNFITTED FINITE ELEMENT METHODS AND APPLICATIONS, 2017, 121 : 183 - 210
  • [3] Fictitious domain method with boundary value correction using penalty-free Nitsche method
    Boiveau, Thomas
    Burman, Erik
    Claus, Susanne
    Larson, Mats
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2018, 26 (02) : 77 - 95
  • [4] THE PENALTY-FREE NITSCHE METHOD AND NONCONFORMING FINITE ELEMENTS FOR THE SIGNORINI PROBLEM
    Burman, Erik
    Hansbo, Peter
    Larson, Mats G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 2523 - 2539
  • [5] Weak imposition of boundary conditions for the Navier-Stokes equations by a penalty method
    Caglar, Atife
    Liakos, Anastasios
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 61 (04) : 411 - 431
  • [6] ANALYSIS OF A STABILIZED PENALTY-FREE NITSCHE METHOD FOR THE BRINKMAN, STOKES, AND DARCY PROBLEMS
    Blank, Laura
    Caiazzo, Alfonso
    Chouly, Franz
    Lozinski, Alexei
    Mura, Joaquin
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2019, 52 (06) : 2149 - 2185
  • [7] The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements
    Schillinger, Dominik
    Harari, Isaac
    Hsu, Ming-Chen
    Kamensky, David
    Stoter, Stein K. F.
    Yu, Yue
    Zhao, Ying
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 309 : 625 - 652
  • [8] A penalty-free Shifted Boundary Method of arbitrary order
    Collins, J. Haydel
    Lozinski, Alexei
    Scovazzi, Guglielmo
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [9] WEAK IMPOSITION OF SIGNORINI BOUNDARY CONDITIONS ON THE BOUNDARY ELEMENT METHOD
    Burman, Erik
    Frei, Stefan
    Scroggs, Matthew W.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (04) : 2334 - 2350
  • [10] Penalty-Free Any-Order Weak Galerkin FEMs for Linear Elasticity on Quadrilateral Meshes
    Wang, Ruishu
    Wang, Zhuoran
    Liu, Jiangguo
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (01)