In this paper, we study the stability of the nonsymmetric version of the Nitsche method without penalty for compressible and incompressible elasticity. For the compressible case we prove convergence of the error in the H-1-and L-2-norms. In the incompressible case we use a Galerkin least squares pressure stabilization and we prove convergence in the H-1-norm for the velocity and convergence of the pressure in the L-2-norm.
机构:
Univ Paris Est, CERMICS ENPC, F-77455 Marne La Vallee 2, France
Inria Paris, 2 Rue Simone Iff, F-75589 Paris, FranceUniv Paris Est, CERMICS ENPC, F-77455 Marne La Vallee 2, France
Boiveau, Thomas
Burman, Erik
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Dept Math, Gower St, London WC1E 6BT, EnglandUniv Paris Est, CERMICS ENPC, F-77455 Marne La Vallee 2, France
Burman, Erik
Claus, Susanne
论文数: 0引用数: 0
h-index: 0
机构:
Cardiff Univ, Cardiff Sch Engn, Queens Bldg, Cardiff CF24 3AA, WalesUniv Paris Est, CERMICS ENPC, F-77455 Marne La Vallee 2, France
Claus, Susanne
[J].
GEOMETRICALLY UNFITTED FINITE ELEMENT METHODS AND APPLICATIONS,
2017,
121
: 183
-
210