Regularisable and minimal orbits for group actions in infinite dimensions

被引:4
|
作者
Arnaudon, M
Paycha, S
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
关键词
D O I
10.1007/s002200050282
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a class of regularisable infinite dimensional principal fibre bundles which includes fibre bundles arising in gauge field theories like Yang-Mills and string theory and which generalise finite dimensional Riemannian principal fibre bundles induced by an isometric action. We show that the orbits of regularisable bundles have well defined, both heat-kernel and zeta function regularised volumes, We introduce a notion of mu-minimality (mu epsilon R) for these orbits which extend the finite dimensional one. Our approach uses heat-kernel methods and yields both "heat-kernel" (obtained via heat-kernel regularisation) and "zeta function" (obtained via zeta function regularisation) minimality for specific values of the parameter mu. For each of these notions, we give an infinite dimensional version of Hsiang's theorem which extends the finite dimensional case, interpreting mu-minimal orbits as orbits with extremal (mu-regularised) volume.
引用
收藏
页码:641 / 662
页数:22
相关论文
共 50 条
  • [31] Stronger Versions of Sensitivity for Minimal Group Actions
    Jian Li
    Yi Ni Yang
    Acta Mathematica Sinica, English Series, 2021, 37 : 1933 - 1946
  • [32] Stronger Versions of Sensitivity for Minimal Group Actions
    Li, Jian
    Yang, Yi Ni
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (12) : 1933 - 1946
  • [33] Minimal orbit sizes in nilpotent group actions
    Keller, Thomas Michael
    Lv, Heng
    Qian, Guohua
    Yang, Dongfang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (07)
  • [34] Stronger Versions of Sensitivity for Minimal Group Actions
    Jian LI
    Yi Ni YANG
    ActaMathematicaSinica,EnglishSeries, 2021, (12) : 1933 - 1946
  • [35] Actions of the hyperoctahedral group to compute minimal contractors
    Jaulin L.
    Artificial Intelligence, 2022, 313
  • [36] ON THE QUESTION OF ERGODICITY FOR MINIMAL GROUP ACTIONS ON THE CIRCLE
    Deroin, Bertrand
    Kleptsyn, Victor
    Navas, Andres
    MOSCOW MATHEMATICAL JOURNAL, 2009, 9 (02) : 263 - 303
  • [37] INFINITE PERIODIC MINIMAL SURFACE - FROM 4 DIMENSIONS TO 3
    MOSSERI, R
    SADOC, JF
    JOURNAL DE PHYSIQUE, 1990, 51 (23): : C7257 - C7264
  • [38] Linear group actions with at most three orbits of the largest size
    Burcu Çınarcı
    Thomas Michael Keller
    Monatshefte für Mathematik, 2024, 203 : 313 - 322
  • [39] Separation of orbits under group actions with an application to quantum systems
    Rötteler, M
    Müller-Quade, J
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2000, 10 (4-5) : 279 - 303
  • [40] Separation of Orbits under Group Actions with an Application to Quantum Systems
    Martin Rötteler<--ID="*"supported by DFG grant GRK 209/3-98-->
    Jörn Müller-Quade
    Applicable Algebra in Engineering, Communication and Computing, 2000, 10 : 279 - 303