The Quenched Critical Point for Self-Avoiding Walk on Random Conductors

被引:1
|
作者
Chino, Yuki [1 ]
Sakai, Akira [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 060, Japan
关键词
Disordered systems; Self-avoiding walk; Random medium; Critical point; RANDOM-ENVIRONMENTS;
D O I
10.1007/s10955-016-1477-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Following similar analysis to that in Lacoin (Probab Theory Relat Fields 159: 777-808, 2014), we can show that the quenched critical point for self-avoiding walk on random conductors on Z(d) is almost surely a constant, which does not depend on the location of the reference point. We provide upper and lower bounds which are valid for all d >= 1.
引用
收藏
页码:754 / 764
页数:11
相关论文
共 50 条
  • [1] The Quenched Critical Point for Self-Avoiding Walk on Random Conductors
    Yuki Chino
    Akira Sakai
    Journal of Statistical Physics, 2016, 163 : 754 - 764
  • [2] Random walk on the self-avoiding tree
    Huynh, Cong Bang
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (02): : 1507 - 1515
  • [3] A SELF-AVOIDING WALK ON RANDOM STRIPS
    DERRIDA, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (03): : L119 - L125
  • [4] A SELF-AVOIDING RANDOM-WALK
    LAWLER, GF
    DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) : 655 - 693
  • [5] CRITICAL EXPONENTS FOR THE SELF-AVOIDING RANDOM-WALK IN 3 DIMENSIONS
    DEFORCRAND, P
    KOUKIOU, F
    PETRITIS, D
    JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (1-2) : 223 - 234
  • [6] THE PROBLEM OF A SELF-AVOIDING RANDOM-WALK
    ALKHIMOV, VI
    USPEKHI FIZICHESKIKH NAUK, 1991, 161 (09): : 133 - 160
  • [7] THE SPIRALING SELF-AVOIDING WALK IN A RANDOM ENVIRONMENT
    NIFLE, M
    HILHORST, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (02): : 285 - 301
  • [8] SELF-AVOIDING RANDOM-WALK IN SUPERSPACE
    KAZAKOV, DI
    PHYSICS LETTERS B, 1988, 215 (01) : 129 - 132
  • [9] A FAMILY OF SELF-AVOIDING RANDOM WALKS INTERPOLATING THE LOOP-ERASED RANDOM WALK AND A SELF-AVOIDING WALK ON THE SIERPINSKI GASKET
    Hattori, Kumiko
    Ogo, Noriaki
    Otsuka, Takafumi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (02): : 289 - 311
  • [10] Energy of the interacting self-avoiding walk at the θ point
    Franchini, Simone
    Balzan, Riccardo
    PHYSICAL REVIEW E, 2020, 102 (03)