In Depth Exploration of the Alternative Proteome of Drosophila melanogaster

被引:7
|
作者
Fabre, Bertrand [1 ,2 ]
Choteau, Sebastien A. [3 ]
Duboe, Carine [1 ]
Pichereaux, Carole [4 ,5 ,6 ]
Montigny, Audrey [1 ]
Korona, Dagmara [7 ]
Deery, Michael J. [2 ]
Camus, Mylene [5 ,6 ]
Brun, Christine [3 ,8 ]
Burlet-Schiltz, Odile [5 ,6 ]
Russell, Steven [7 ]
Combier, Jean-Philippe [1 ]
Lilley, Kathryn S. [2 ]
Plaza, Serge [1 ]
机构
[1] Univ Toulouse, Lab Rech Sci Vegetales, UMR5546, UPS, Auzeville tolosane, France
[2] Univ Cambridge, Cambridge Ctr Prote, Cambridge Syst Biol Ctr, Dept Biochem, Cambridge, Cambridgeshire, England
[3] Aix Marseille Univ, Turing Ctr Living Syst, INSERM, TAGC, Marseille, France
[4] Federat Rech FR3450, Agrobiosciences, Interact & Biodivers AIB, CNRS, Toulouse, France
[5] Univ Toulouse, Inst Pharmacol & Biol Structurale IPBS, CNRS, UPS, Toulouse, France
[6] Infrastructure Natl Prote, ProFI, FR 2048, Toulouse, France
[7] Univ Cambridge, Cambridge Syst Biol Ctr, Dept Genet, Cambridge, Cambridgeshire, England
[8] CNRS, Marseille, France
基金
英国生物技术与生命科学研究理事会;
关键词
alternative proteins; short open reading frame-encoded polypeptide; microprotein; peptidomics; mass spectrometry; QUANTIFICATION; TRANSLATION; ANNOTATION; PREDICTION; REPOSITORY; DYNAMICS;
D O I
10.3389/fcell.2022.901351
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Recent studies have shown that hundreds of small proteins were occulted when protein-coding genes were annotated. These proteins, called alternative proteins, have failed to be annotated notably due to the short length of their open reading frame (less than 100 codons) or the enforced rule establishing that messenger RNAs (mRNAs) are monocistronic. Several alternative proteins were shown to be biologically active molecules and seem to be involved in a wide range of biological functions. However, genome-wide exploration of the alternative proteome is still limited to a few species. In the present article, we describe a deep peptidomics workflow which enabled the identification of 401 alternative proteins in Drosophila melanogaster. Subcellular localization, protein domains, and short linear motifs were predicted for 235 of the alternative proteins identified and point toward specific functions of these small proteins. Several alternative proteins had approximated abundances higher than their canonical counterparts, suggesting that these alternative proteins are actually the main products of their corresponding genes. Finally, we observed 14 alternative proteins with developmentally regulated expression patterns and 10 induced upon the heat-shock treatment of embryos, demonstrating stage or stress-specific production of alternative proteins.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Multigenerational Effect of Heat Stress on the Drosophila melanogaster Sperm Proteome
    Khan, Shagufta
    Mishra, Rakesh K.
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (06) : 2265 - 2278
  • [22] Alternative splicing landscape of the Drosophila melanogaster genome
    V. N. Babenko
    R. B. Aitnazarov
    F. A. Goncharov
    I. F. Zhimulev
    Russian Journal of Genetics, 2010, 46 : 1036 - 1038
  • [23] Drosophila melanogaster as an alternative model organism in nutrigenomics
    Baenas, Nieves
    Wagner, Anika E.
    GENES AND NUTRITION, 2019, 14
  • [24] A Mighty Small Heart: The Cardiac Proteome of Adult Drosophila melanogaster
    Cammarato, Anthony
    Ahrens, Christian H.
    Alayari, Nakissa N.
    Qeli, Ermir
    Rucker, Jasma
    Reedy, Mary C.
    Zmasek, Christian M.
    Gucek, Marjan
    Cole, Robert N.
    Van Eyk, Jennifer E.
    Bodmer, Rolf
    O'Rourke, Brian
    Bernstein, Sanford I.
    Foster, D. Brian
    PLOS ONE, 2011, 6 (04):
  • [25] Comparative genome and proteome analysis of anopheles gambiae and Drosophila melanogaster
    Zdobnov, EM
    von Mering, C
    Letunic, I
    Torrents, D
    Suyama, M
    Copley, RR
    Christophides, GK
    Thomasova, D
    Holt, RA
    Subramanian, GM
    Mueller, HM
    Dimopoulos, G
    Law, JH
    Wells, MA
    Birney, E
    Charlab, R
    Halpern, AL
    Kokoza, E
    Kraft, CL
    Lai, ZW
    Lewis, S
    Louis, C
    Barillas-Mury, C
    Nusskern, D
    Rubin, GM
    Salzberg, SL
    Sutton, GG
    Topalis, P
    Wides, R
    Wincker, P
    Yandell, M
    Collins, FH
    Ribeiro, J
    Gelbart, WM
    Kafatos, FC
    Bork, P
    SCIENCE, 2002, 298 (5591) : 149 - 159
  • [26] Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster
    Subramanian, Perumal
    Jayapalan, Jaime J.
    Abdul-Rahman, Puteri S.
    Arumugam, Manjula
    Hashim, Onn H.
    PEERJ, 2016, 4
  • [27] A Proteome Catalog of Drosophila melanogaster -: An essential resource for targeted quantitative proteomics
    Ahrens, Christian H.
    Brunner, Erich
    Hafen, Ernst
    Aebersold, Ruedi
    Basler, Konrad
    FLY, 2007, 1 (03) : 182 - 186
  • [28] Dynamics of nuclear matrix proteome during embryonic development in Drosophila melanogaster
    Parul Varma
    Rakesh K Mishra
    Journal of Biosciences, 2011, 36 : 439 - 459
  • [29] The Drosophila melanogaster sperm proteome-II (DmSP-II)
    Wasbrough, Elizabeth R.
    Dorus, Steve
    Hester, Svenja
    Howard-Murkin, Julie
    Lilley, Kathryn
    Wilkin, Elaine
    Polpitiya, Ashoka
    Petritis, Konstantinos
    Karr, Timothy L.
    JOURNAL OF PROTEOMICS, 2010, 73 (11) : 2171 - 2185
  • [30] Dynamics of nuclear matrix proteome during embryonic development in Drosophila melanogaster
    Varma, Parul
    Mishra, Rakesh K.
    JOURNAL OF BIOSCIENCES, 2011, 36 (03) : 439 - 459