A semigroup approach to American options

被引:3
|
作者
Cruz-Báez, DI [1 ]
González-Rodríguez, JM [1 ]
机构
[1] Univ La Laguna, Dept Appl Econ, San Cristobal la Laguna 38071, Tenerife, Spain
关键词
semilinear parabolic problems; American options; semigroups;
D O I
10.1016/j.jmaa.2004.07.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give new conditions for the existence and uniqueness of the value of an American option by using semigroup theory. Some open questions given by Gozzi et al. and Kholodnyi are solved and improved, specifically, that the Black-Scholes operator is degenerate and that it is sectorial. Moreover, our results are extended to the original American problem. Finally, we obtain an integral equation which gives the value of an American option, providing an alternative method to calculate the value of American options. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:157 / 165
页数:9
相关论文
共 50 条
  • [31] A Semigroup Approach to Harmonic Maps
    Karl-Theodor Sturm
    [J]. Potential Analysis, 2005, 23 : 225 - 277
  • [32] A Monte Carlo approach to American options pricing including counterparty risk
    Arregui, Inigo
    Salvador, Beatriz
    Vazquez, Carlos
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (11) : 2157 - 2176
  • [33] A Fuzzy Set Approach on Pricing American Put Options on Euribor Futures
    Yu, Xiaojian
    Fan, Min
    [J]. 2008 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM AND KNOWLEDGE ENGINEERING, VOLS 1 AND 2, 2008, : 435 - 439
  • [34] Power Penalty Approach to American Options Pricing Under Regime Switching
    Zhang, Kai
    Yang, Xiaoqi
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (01) : 311 - 331
  • [35] Power Penalty Approach to American Options Pricing Under Regime Switching
    Kai Zhang
    Xiaoqi Yang
    [J]. Journal of Optimization Theory and Applications, 2018, 179 : 311 - 331
  • [36] An irregular grid approach for pricing high-dimensional American options
    Berridge, S. J.
    Schumacher, J. M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (01) : 94 - 111
  • [37] A numerical study of the utility-indifference approach for pricing American options
    Yan, Dong
    Zhu, Song-Ping
    Lu, Xiaoping
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 894 - 905
  • [38] Application of the American real flexible switch options methodology a generalized approach
    Zmeskal, Zdenek
    [J]. FINANCE A UVER-CZECH JOURNAL OF ECONOMICS AND FINANCE, 2008, 58 (5-6): : 261 - 275
  • [39] Pricing perpetual American catastrophe put options: A penalty function approach
    Lin, X. Sheldon
    Wang, Tao
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02): : 287 - 295
  • [40] Valuing American options by simulation: A simple least-squares approach
    Longstaff, FA
    Schwartz, ES
    [J]. REVIEW OF FINANCIAL STUDIES, 2001, 14 (01): : 113 - 147