Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media

被引:174
|
作者
Hu, Xiaoyan [1 ]
Tian, Xuemei [1 ]
Lin, Ying-Wu [2 ]
Wang, Zhonghua [1 ]
机构
[1] China West Normal Univ, Coll Chem & Chem Engn, Chem Synth & Pollut Control Key Lab Sichuan Prov, Nanchang 637002, Jiangxi, Peoples R China
[2] Univ South China, Sch Chem & Chem Engn, Hengyang 421001, Peoples R China
关键词
LAYERED DOUBLE HYDROXIDE; EFFICIENT BIFUNCTIONAL ELECTROCATALYST; STABLE ELECTROCATALYST; CARBON NANOSHEETS; ENHANCED HYDROGEN; NI FOAM; FE; NANOPARTICLES; PHOSPHIDE; CATALYST;
D O I
10.1039/c9ra07258f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, several commonly used conductive substrates as electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline conditions were studied, including nickel foam (Ni foam), copper foam (Cu foam), nickel mesh (Ni mesh) and stainless steel mesh (SS mesh). Ni foam and SS mesh are demonstrated as high-performance and stable electrocatalysts for HER and OER, respectively. For HER, Ni foam exhibited an overpotential of 0.217 V at a current density of 10 mA cm(-2) with a Tafel slope of 130 mV dec(-1), which were larger than that of the commercial Pt/C catalyst, but smaller than that of the other conductive substrates. Meanwhile, the SS mesh showed the best electrocatalytic performance for OER with an overpotential of 0.277 V at a current density of 10 mA cm(-2) and a Tafel slope of 51 mV dec(-1). Its electrocatalytic performance not only exceeded those of the other conductive substrates but also the commercial RuO2 catalyst. Moreover, both Ni foam and SS mesh exhibited high stability during HER and OER, respectively. Furthermore, in the two-electrode system with Ni foam used as the cathode and SS mesh used as the anode, they enable a current density of 10 mA cm(-2) at a small cell voltage of 1.74 V. This value is comparable to or exceeding the values of previously reported electrocatalysts for overall water splitting. In addition, NiO on the surface of Ni foam may be the real active species for HER, NiO and FeOx on the surface of SS mesh may be the active species for OER. The abundant and commercial availability, long-term stability and low-cost property of nickel foam and stainless steel mesh enable their large-scale practical application in water splitting.
引用
收藏
页码:31563 / 31571
页数:9
相关论文
共 50 条
  • [21] Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review
    Plevova, Michaela
    Hnat, Jaromir
    Bouzek, Karel
    JOURNAL OF POWER SOURCES, 2021, 507
  • [22] Nanostructured Carbon Based Heterogeneous Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media
    Lei, Chaojun
    Lyu, Siliu
    Si, Jincheng
    Yang, Bin
    Li, Zhongjian
    Lei, Lecheng
    Wen, Zhenhai
    Wu, Gang
    Hou, Yang
    CHEMCATCHEM, 2019, 11 (24) : 5855 - 5874
  • [23] Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media
    Stelmachowski, Pawel
    Duch, Joanna
    Sebastian, David
    Lazaro, Maria Jesus
    Kotarba, Andrzej
    MATERIALS, 2021, 14 (17)
  • [24] Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review
    Durovic, Martin
    Hnat, Jaromir
    Bouzek, Karel
    JOURNAL OF POWER SOURCES, 2021, 493
  • [25] Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction
    Liu, Yinmeng
    Yang, Duo
    Liu, Zhongyi
    Yang, Jing-He
    JOURNAL OF POWER SOURCES, 2020, 461 (461)
  • [26] Bimetallic Ni-Mn Electrocatalysts for Stable Oxygen Evolution Reaction in Simulated/Alkaline Seawater and Overall Performance in the Splitting of Alkaline Seawater
    Barua, Sukomol
    Balciunaite, Aldona
    Upskuviene, Daina
    Vaiciuniene, Jurate
    Tamasauskaite-Tamasiunaite, Loreta
    Norkus, Eugenijus
    COATINGS, 2024, 14 (08)
  • [27] Electrodeposition of nickel–iron on stainless steel as an efficient electrocatalyst coating for the oxygen evolution reaction in alkaline conditions
    Yifu Wang
    Nigel Williamson
    Richard Dawson
    Nuno Bimbo
    Journal of Applied Electrochemistry, 2023, 53 : 877 - 892
  • [28] Plasma Treatment on Cobalt Sulfide Nanoparticle/Nickel Foam Electrocatalysts for Hydrogen Evolution Reaction
    Park, Ki-Hyun
    Mathew, Sobin
    Kim, Kyeong-Hwan
    Kim, Suyeon
    Li, Oi Lun
    Jin, Sung-Ho
    Kumaresan, Raja
    Zha, Chenyang
    Hui, Kwun Nam
    Cho, Young-Rae
    ACS APPLIED NANO MATERIALS, 2024, 7 (08) : 8547 - 8556
  • [29] Defective nickel zirconium oxide mesoporous bifunctional electrocatalyst for oxygen evolution reaction and overall water splitting
    Sadaqat, Maira
    Manzoor, Sumaira
    Aman, Salma
    Nisar, Laraib
    Najam-Ul-Haq, Muhammad
    Shah, Afzal
    Shawky, Ahmed M.
    Ali, H. Elhosiny
    Ashiq, Muhammad Naeem
    Taha, T. A.
    FUEL, 2023, 333
  • [30] Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting
    Liu, Shilong
    Lin, Zongshan
    Wan, Rendian
    Liu, Yonggang
    Liu, Zhe
    Zhang, Shuidong
    Zhang, Xiaofeng
    Tang, Zhenghua
    Lu, Xiaoxing
    Tian, Yong
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (37) : 21259 - 21269