Parallelization of the Mixture of Gaussians Model for Motion Detection on the GPU

被引:0
|
作者
Kovacev, Petar [1 ]
Misic, Marko [1 ]
Tomasevic, Milo [1 ]
机构
[1] Univ Belgrade, Sch Elect Engn, Belgrade, Serbia
关键词
CUDA; GPU parallelization; mixture of Gaussians; motion detection; BACKGROUND SUBTRACTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Motion detection and object tracking have many applications in various domains. The process of motion detection depends on the detailed analysis of pixels from successive frames in the given video scene. Some background subtraction techniques are commonly used for this purpose. Nowadays, even the consumer electronic devices, like cell phones, can produce high definition videos with their cameras. Efficient, real-time analysis of those videos can be performed using modern graphics processing units. In this paper, we present a GPU implementation of the mixture of Gaussians model for background subtraction. We observed speedups up to 6 times over the reference sequential implementation.
引用
收藏
页码:58 / 61
页数:4
相关论文
共 50 条
  • [21] PMOG: The projected mixture of Gaussians model with application to blind source separation
    Pendse, Gautam V.
    NEURAL NETWORKS, 2012, 28 : 40 - 60
  • [22] A Generalized Model for Robust Tensor Factorization With Noise Modeling by Mixture of Gaussians
    Chen, Xi'ai
    Han, Zhi
    Wang, Yao
    Zhao, Qian
    Meng, Deyu
    Lin, Lin
    Tang, Yandong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) : 5380 - 5393
  • [23] Efficient parallelization on GPU of an image smoothing method based on a variational model
    Carlos A. S. J. Gulo
    Henrique F. de Arruda
    Alex F. de Araujo
    Antonio C. Sementille
    João Manuel R. S. Tavares
    Journal of Real-Time Image Processing, 2019, 16 : 1249 - 1261
  • [24] Parallelization on Model of Ecological Environment Remote Sensing Evaluation Based on GPU
    Li L.
    Gu J.
    Song A.
    Zheng H.
    Cao J.
    Zhu D.
    Zhu, Dehai (zhudehai@cau.edu.cn), 1600, Chinese Society of Agricultural Machinery (48): : 135 - 141
  • [25] Estimation of Seismic Wavelets Based on the Multivariate Scale Mixture of Gaussians Model
    Gao, Jing-Huai
    Zhang, Bing
    ENTROPY, 2010, 12 (01) : 14 - 33
  • [26] Efficient parallelization on GPU of an image smoothing method based on a variational model
    Gulo, Carlos A. S. J.
    de Arruda, Henrique F.
    de Araujo, Alex F.
    Sementille, Antonio C.
    Tavares, Joao Manuel R. S.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (04) : 1249 - 1261
  • [27] PARALLELIZATION AND PERFORMANCE OF THE NIM WEATHER MODEL ON CPU, GPU, AND MIC PROCESSORS
    Govett, Mark
    Rosinski, Jim
    Middlecoff, Jacques
    Henderson, Tom
    Lee, Jin
    MacDonald, Alexander
    Wang, Ning
    Madden, Paul
    Schramm, Julie
    Duarte, Antonio
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2017, 98 (10) : 2201 - 2214
  • [28] The spatial change detection problem in robotics: a probabilistic approach based on mixture of Gaussians
    Gutierrez, M. A.
    Manso, L.
    Drews, P., Jr.
    Nunez, P.
    COGNITIVE PROCESSING, 2012, 13 : S4 - S4
  • [29] Background Subtraction Based on a New Fuzzy Mixture of Gaussians for Moving Object Detection
    Darwich, Ali
    Hebert, Pierre-Alexandre
    Bigand, Andre
    Mohanna, Yasser
    JOURNAL OF IMAGING, 2018, 4 (07)
  • [30] Region-based Mixture of Gaussians modelling for foreground detection in dynamic scenes
    Varadarajan, Sriram
    Miller, Paul
    Zhou, Huiyu
    PATTERN RECOGNITION, 2015, 48 (11) : 3488 - 3503