CONDUCTION IN LOW MACH NUMBER FLOWS. I. LINEAR AND WEAKLY NONLINEAR REGIMES

被引:25
|
作者
Lecoanet, Daniel [1 ,2 ,3 ]
Brown, Benjamin P. [3 ,4 ,5 ]
Zweibel, Ellen G. [3 ,6 ,7 ]
Burns, Keaton J. [3 ,8 ]
Oishi, Jeffrey S. [3 ,9 ,10 ]
Vasil, Geoffrey M. [11 ]
机构
[1] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA
[3] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[4] Univ Colorado, LASP, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA
[6] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA
[7] Univ Wisconsin, Lab & Astrophys Plasmas, Ctr Magnet Self Org, Madison, WI 53706 USA
[8] MIT, Dept Phys, Cambridge, MA 02139 USA
[9] Farmingdale State Coll, Dept Phys, Farmingdale, NY 11735 USA
[10] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA
[11] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
ASTROPHYSICAL JOURNAL | 2014年 / 797卷 / 02期
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
conduction; convection; stars: interiors; waves; TURBULENT COMPRESSIBLE CONVECTION; PARTIAL-DIFFERENTIAL-EQUATIONS; SOUND-PROOF TREATMENTS; ANELASTIC APPROXIMATION; ENERGY-CONSERVATION; SPHERICAL-SHELLS; DEEP ATMOSPHERE; GRAVITY-WAVES; STELLAR; HYDRODYNAMICS;
D O I
10.1088/0004-637X/797/2/94
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier's law, in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection. In addition to simulating the two thermal conduction models with the fully compressible Navier-Stokes equations, we also study their effects in the reduced "soundproof" anelastic and pseudoincompressible (PI) equations. We find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature and entropy diffusion might become more important for strongly turbulent convection.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Radiation models for thermal flows at low Mach number
    Teleaga, Ioan
    Seaid, Mohammed
    Gasser, Ingenum
    Klar, Axel
    Struckmeier, Jens
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 215 (02) : 506 - 525
  • [22] Numerical Simulation of Low Mach Number Reactive Flows
    Tomboulides A.G.
    Lee J.C.Y.
    Orszag S.A.
    Journal of Scientific Computing, 1997, 12 (2) : 139 - 167
  • [23] Boundary conditions for low Mach number reacting flows
    Prosser, Robert
    WSEAS Transactions on Mathematics, 2006, 5 (10) : 1102 - 1107
  • [24] Turbulent transport modeling in low Mach number flows
    Shimomura, Y
    PHYSICS OF FLUIDS, 1999, 11 (10) : 3136 - 3149
  • [25] A Relaxation Scheme for the Simulation of Low Mach Number Flows
    Abbate, Emanuela
    Iollo, Angelo
    Puppo, Gabriella
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-HYPERBOLIC, ELLIPTIC AND PARABOLIC PROBLEMS, 2017, 200 : 227 - 235
  • [26] New approaches for computation of low Mach number flows
    Shima, Eiji
    Kitamura, Keiichi
    COMPUTERS & FLUIDS, 2013, 85 : 143 - 152
  • [27] Numerical simulation of low Mach number reacting flows
    Bell, J. B.
    Aspden, A. J.
    Day, M. S.
    Lijewski, M. J.
    SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2007, 78
  • [28] Numerical simulation of low Mach number reacting flows
    Woosely, S. E.
    Aspden, A. J.
    Bell, J. B.
    Kerstein, A. R.
    Sankaran, V.
    SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
  • [29] A Low Mach Number Model for Moist Atmospheric Flows
    Duarte, Max
    Almgren, Ann S.
    Bell, John B.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (04) : 1605 - 1620
  • [30] Lattice BGK models for low Mach number flows
    Filippova, O
    Hänel, D
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 1186 - 1191