Automated detection and mapping of rough snow surfaces including avalanche deposits using airborne optical remote sensing

被引:0
|
作者
Buehler, Yves [1 ]
Hueni, Andreas [1 ]
Christen, Marc [2 ]
Meister, Roland [2 ]
Kellenberger, Tobias [3 ]
机构
[1] Univ Zurich, Remote Sensing Labs, Dept Geog, CH-8006 Zurich, Switzerland
[2] WSL Institute for Snow and Avalanche Res SLF, Davos, Switzerland
[3] Fed Off Topography swisstopo, Bern, Switzerland
关键词
Remote sensing; avalanche mapping; airborne digital scanner; rapid mapping; snow surface roughness; wind modelled snowpack; GRAIN-SIZE; SEA-ICE; CLASSIFICATION; RETRIEVAL; ALBEDO; COVER;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The characteristics of snow pack surfaces are spatially and temporally highly variable. Today, in situ field observations provide mostly isolated information on characteristics such as grain size, grain shape, free water content or surface roughness. Remote sensing instruments are promising tools for systematic and wide-area mapping of several snow surface parameters. This study presents a methodology for an automated, systematic and wide-area detection and mapping of rough snow surfaces including avalanche deposits using optical remote sensing data of high spatial and radiometric resolution. A processing chain integrating directional, textural and spectral information was developed using ADS40 airborne scanner data acquired in spring 2008 and 2009 over a test site near Davos, Switzerland. Though certain limitations exist, encouraging detection and mapping accuracies can be reported. The presented approach is a promising addition to existing field observation methods for remote regions, and can be applied in inaccessible areas.
引用
下载
收藏
页码:170 / +
页数:2
相关论文
共 50 条
  • [31] Mapping forest and peat fires using hyperspectral airborne remote-sensing data
    Kozoderov, V. V.
    Kondranin, T. V.
    Dmitriev, E. V.
    Kamentsev, V. P.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2012, 48 (09) : 941 - 948
  • [32] Could retrieval of snow layer formation by optical satellite remote sensing help avalanche forecasting? Presentation of first results
    Solberg, Rune
    Frauenfelder, Regula
    Koren, Hans
    Kronholm, Kalle
    ISSW 09 EUROPE: INTERNATIONAL SNOW SCIENCE WORKSHOP, PROCEEDINGS, 2009, : 207 - +
  • [33] Hazelnut mapping detection system using optical and radar remote sensing: Benchmarking machine learning algorithms
    Sasso, Daniele
    Lodato, Francesco
    Sabatini, Anna
    Pennazza, Giorgio
    Vollero, Luca
    Santonico, Marco
    Merone, Mario
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2024, 12 : 97 - 108
  • [34] Leak detection from rural aqueducts using airborne remote sensing techniques
    Pickerill, JM
    Malthus, TJ
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1998, 19 (12) : 2427 - 2433
  • [35] Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data
    Ferrier, Graham
    Ganas, Athanassios
    Pope, Richard
    Miles, A. Jo
    GEOSCIENCES, 2019, 9 (03)
  • [36] Bayesian Vehicle Detection Using Optical Remote Sensing Images
    Gharbi, Walma
    Chaari, Lotfi
    Benazza-Benyahia, Amel
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2018, 2018, 11182 : 258 - 269
  • [37] Remote Sensing of Aerosol Optical Depth Using an Airborne Polarimeter over North China
    Wang, Han
    Yang, Leiku
    Deng, Anjian
    Du, Weibing
    Liu, Pei
    Sun, Xiaobing
    REMOTE SENSING, 2017, 9 (10)
  • [38] Forest fire monitoring using airborne optical full spectrum remote sensing data
    Pang Y.
    Jia W.
    Qin X.
    Si L.
    Liang X.
    Lin X.
    Li Z.
    1600, Science Press (24): : 1280 - 1292
  • [39] Crop Residue Modeling and Mapping Using Landsat, ALI, Hyperion and Airborne Remote Sensing Data
    Galloza, Magda S.
    Crawford, Melba M.
    Heathman, Gary C.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 446 - 456
  • [40] Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data
    Liu, Luxia
    Coops, Nicholas C.
    Aven, Neal W.
    Pang, Yong
    REMOTE SENSING OF ENVIRONMENT, 2017, 200 : 170 - 182