Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism

被引:18
|
作者
Jayakody, Lahiru N. [1 ,2 ,3 ]
Turner, Timothy Lee [1 ,4 ]
Yun, Eun Ju [1 ,2 ]
Kong, In Iok [1 ,2 ]
Liu, Jing-Jing [1 ,2 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[3] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA
[4] Northwestern Univ, Feinberg Sch Med, Dept Microbiol Immunol, Chicago, IL 60611 USA
关键词
S; cerevisiae; Xylose; Glycolaldehyde; Aldehydes toxicity; Gre2p; SCHEFFERSOMYCES-STIPITIS; PICHIA-STIPITIS; CO-FERMENTATION; YEAST; GLUCOSE; WATER; INHIBITORS; REDUCTASE; ETHANOL; BIOMASS;
D O I
10.1007/s00253-018-9216-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Engineered S. cerevisiae employing the xylose reductase pathway enables efficient xylose valorization to fuels and chemicals. However, toxicity of thermochemically pretreated biomass hydrolysate on S. cerevisiae is one of the key technical challenges to upgrade biomass-derived sugars including xylose and glucose into high-value products. We investigated the effect of glycolaldehyde, one of the biomass-derived highly toxic aldehyde compounds, and its combinatorial inhibitory effect with other major fermentation inhibitors commonly found in plant hydrolysate such as methylglyoxal, 5-HMF, furfural, vanillin, and acetic acid on engineered xylose-fermenting S. cerevisiae in xylose and/or glucose media. We elucidated that glycolaldehyde and methylglyoxal are the key inhibitory short-aliphatic aldehydes on engineered xylose-fermenting S. cerevisiae in xylose-containing medium. Indeed, the degree of toxicity of these tested fermentation inhibitors varies with the sole carbon source of the medium. We demonstrate that genome integration of an extra copy of autologous GRE2 with its native promotor substantially improved the toxic tolerance of engineered xylose-fermenting S. cerevisiae to major inhibitory compounds including glycolaldehyde in the xylose-containing medium, and xylose-rich, lignocellulosic hydrolysate derived from Miscanthus giganteus, and concurrently improved the ethanol fermentation profile. Outcomes of this study will aid the development of next-generation robust S. cerevisiae strains for efficient fermentation of hexose and pentose sugars found in biomass hydrolysate.
引用
收藏
页码:8121 / 8133
页数:13
相关论文
共 50 条
  • [41] Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain
    Dickinson, Quinn
    Bottoms, Scott
    Hinchman, Li
    McIlwain, Sean
    Li, Sheena
    Myers, Chad L.
    Boone, Charles
    Coon, Joshua J.
    Hebert, Alexander
    Sato, Trey K.
    Landick, Robert
    Piotrowski, Jeff S.
    MICROBIAL CELL FACTORIES, 2016, 15
  • [42] Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis
    Minhye Shin
    Jeong-won Kim
    Suji Ye
    Sooah Kim
    Deokyeol Jeong
    Do Yup Lee
    Jong Nam Kim
    Yong-Su Jin
    Kyoung Heon Kim
    Soo Rin Kim
    Applied Microbiology and Biotechnology, 2019, 103 : 5435 - 5446
  • [43] Limitations in Xylose-Fermenting Saccharomyces cerevisiae, Made Evident through Comprehensive Metabolite Profiling and Thermodynamic Analysis
    Klimacek, Mario
    Krahulec, Stefan
    Sauer, Uwe
    Nidetzky, Bernd
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (22) : 7566 - 7574
  • [44] Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis
    Shin, Minhye
    Kim, Jeong-won
    Ye, Suji
    Kim, Sooah
    Jeong, Deokyeol
    Lee, Do Yup
    Kim, Jong Nam
    Jin, Yong-Su
    Kim, Kyoung Heon
    Kim, Soo Rin
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (13) : 5435 - 5446
  • [45] Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures
    Susanne Alff-Tuomala
    Laura Salusjärvi
    Dorothee Barth
    Merja Oja
    Merja Penttilä
    Juha-Pekka Pitkänen
    Laura Ruohonen
    Paula Jouhten
    Applied Microbiology and Biotechnology, 2016, 100 : 969 - 985
  • [46] Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures
    Alff-Tuomala, Susanne
    Salusjarvi, Laura
    Barth, Dorothee
    Oja, Merja
    Penttila, Merja
    Pitkanen, Juha-Pekka
    Ruohonen, Laura
    Jouhten, Paula
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (02) : 969 - 985
  • [47] Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation
    Fredrik Nielsen
    Elia Tomás-Pejó
    Lisbeth Olsson
    Ola Wallberg
    Biotechnology for Biofuels, 8
  • [48] Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation
    Nielsen, Fredrik
    Tomas-Pejo, Elia
    Olsson, Lisbeth
    Wallberg, Ola
    BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
  • [49] The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw
    Fonseca, Cesar
    Olofsson, Kim
    Ferreira, Carla
    Runquist, David
    Fonseca, Luis L.
    Hahn-Hagerdal, Barbel
    Liden, Gunnar
    ENZYME AND MICROBIAL TECHNOLOGY, 2011, 48 (6-7) : 518 - 525
  • [50] Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast Saccharomyces cerevisiae under low oxygen conditions
    Ruohonen, L
    Aristidou, A
    Frey, AD
    Penttilä, M
    Kallio, PT
    ENZYME AND MICROBIAL TECHNOLOGY, 2006, 39 (01) : 6 - 14