AFDM approach for experience inclusion in learning controllers

被引:0
|
作者
Gopinath, S. [1 ]
Kar, I. N. [1 ]
Bhatt, R. K. P. [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, New Delhi 110016, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a new method of experience inclusion in iterative learning controllers (ILC) is proposed. Approximate Fuzzy Data Model (AFDM) technique has been adopted for the process of initial input selection. Instead of zero initial input assumption as in most of the ILC algorithms, in this paper the idea of using past trajectory tracking experiences in the selection of initial input for tracking a new trajectory tracking task has been highlighted. Performance of the proposed AFDM based ILC approach, on initial error reduction and error convergence issues are proved. Comparison with existing local learning technique on the selection of initial input for ILC algorithm proves the efficacy of the proposed AFDM based method.
引用
收藏
页码:272 / +
页数:2
相关论文
共 50 条