The maximum product of sizes of cross-intersecting families

被引:9
|
作者
Borg, Peter [1 ]
机构
[1] Univ Malta, Dept Math, Msida, Malta
关键词
Intersecting family; Cross-intersecting families; KO-RADO THEOREM; SUB-FAMILIES; SHORT PROOF; SYSTEMS; ANALOG;
D O I
10.1016/j.disc.2017.04.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set of sets is called a family. Two families A and B are said to be cross-t-intersecting if each set in A intersects each set in B in at least t elements. For a family.F, let l(F, t) denote the size of a largest subfamily of F whose sets have at least t common elements. We call F a (<= r)-family if each set in F has at most r elements. We show that for any positive integers r, s and t, there exists an integer c(r, s, t) such that the following holds. If A is a subfamily of a (<= r)-family F with l(F, t) >= c(r, s, t)l(F, t + 1), B is a subfamily of a (<= s)-family g with l(g, t) >= c(r, s, t)l(g, t+ 1), and A and B are cross-t-intersecting, then |A| |B| <= l(F, t)l(g, t). We give c(r, s, t) explicitly. Some known results follow from this, and we identify several natural classes of families for which the bound is attained. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2307 / 2317
页数:11
相关论文
共 50 条
  • [41] On Non-Empty Cross-Intersecting Families
    Chao Shi
    Peter Frankl
    Jianguo Qian
    Combinatorica, 2022, 42 : 1513 - 1525
  • [42] ON NON-EMPTY CROSS-INTERSECTING FAMILIES
    Shi, Chao
    Frankl, Peter
    Qian, Jianguo
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1513 - 1525
  • [43] On cross-intersecting uniform sub-families of hereditary families
    Borg, Peter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [44] The maximum sum of the sizes of cross t-intersecting separated families
    Liu, Erica L. L.
    AIMS MATHEMATICS, 2023, 8 (12): : 30910 - 30921
  • [45] A size-sensitive inequality for cross-intersecting families
    Frankl, Peter
    Kupavskii, Andrey
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 62 : 263 - 271
  • [46] On Families of Weakly Cross-intersecting Set-pairs
    Kiraly, Zoltan
    Nagy, Zoltan L.
    Palvoelgyi, Doemoetoer
    Visontai, Mirko
    FUNDAMENTA INFORMATICAE, 2012, 117 (1-4) : 189 - 198
  • [47] Sharp results concerning disjoint cross-intersecting families
    Frankl, Peter
    Kupayskii, Andrey
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 86
  • [48] A note on non-empty cross-intersecting families
    Zhang, Menglong
    Feng, Tao
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [49] Non-empty pairwise cross-intersecting families
    Huang, Yang
    Peng, Yuejian
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 211
  • [50] Cross-intersecting non-empty uniform subfamilies of hereditary families
    Borg, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 78 : 256 - 267