Exploratory data analysis with interactive evolution

被引:0
|
作者
Malinchik, S [1 ]
Bonabeau, E [1 ]
机构
[1] Icosyst Corp, Cambridge, MA 01238 USA
关键词
interactive evolutionary computation; data mining; exploratory data analysis;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We illustrate with two simple examples how Interactive Evolutionary Computation (IEC) can be applied to Exploratory Data Analysis (EDA). IEC is particularly valuable in an EDA context because the objective function is by definition either unknown a priori or difficult to formalize. The first example involves what is probably the simplest possible transformation of data: linear projections. While the concept of linear projections is simple to grasp, in practice finding the appropriate two-dimensional projection that reveals important features of high-dimensional data is no easy task. We show how IEC can be used to quickly find the most informative linear projection(s). In another, more complex example, IEC is used to evolve the "true" metric of attribute space. Indeed, the assumed distance function in attribute space strongly conditions the information content of a two-dimensional display of the data, regardless of the dimension reduction approach. The goal here is to evolve the attribute space distance function until "interesting" features of the data are revealed when a clustering algorithm is applied.
引用
收藏
页码:1151 / 1161
页数:11
相关论文
共 50 条
  • [41] Exploratory data analysis with data desk
    Theus, M
    COMPUTATIONAL STATISTICS, 1998, 13 (01) : 101 - 115
  • [42] Fourth Workshop on Exploratory Search and Interactive Data Analytics (ESIDA)
    Glowacka, Dorota
    Milios, Evangelos
    Soto, Axel
    Mokryn, Osnat
    Paulovich, Fernando
    Parra, Denis
    26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES (IUI '21 COMPANION), 2021, : 18 - 20
  • [43] DataScope: Interactive Visual Exploratory Dashboards For Large Multidimensional Data
    Iyer, Ganesh
    DuttaDuwarah, Sapoonjyoti
    Sharma, Ashish
    2017 IEEE WORKSHOP ON VISUAL ANALYTICS IN HEALTHCARE (VAHC), 2017, : 17 - 23
  • [44] Third Workshop on Exploratory Search and Interactive Data Analytics (ESIDA)
    Glowacka, Dorota
    Milios, Evalgelos
    Soto, Axel J.
    Paulovich, Fernando, V
    Parra, Denis
    Mokryn, Osnat
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES: COMPANION (IUI 2019), 2019, : 141 - 142
  • [45] CancerVis: an Interactive Exploratory Tool for Cancer Biomarker Analysis
    Zhang, Lei
    Klimov, Sergey
    Zhu, Ying
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 785 - 792
  • [46] KFAB DecisionSite: An interactive, exploratory yield analysis framework
    Flores, A
    Lebowitz, J
    Pressnall, W
    Martin, C
    Hopper, CB
    2002 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE AND WORKSHOP: ADVANCING THE SCIENCE OF SEMICONDUCTOR MANUFACTURING EXCELLENCE, 2002, : 155 - 158
  • [47] Landuse data analysis with exploratory data analysis method
    Gao, Wenxiu
    Zhu, Junjie
    Hou, Jianguang
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/ Geomatics and Information Science of Wuhan University, 2009, 34 (12): : 1502 - 1506
  • [48] Model FORRUS: Exploratory Interactive Analysis of Spatio-Temporal Forecasting Data for Evaluation Forest Biodiversity
    Palenova, M. M.
    Korotkov, V. N.
    Chumachenko, S. I.
    Politov, D. V.
    FOREST SCIENCE AND TECHNOLOGY, 2007, 3 (01) : 1 - 9
  • [49] Using Interactive Data Visualizations for Exploratory Analysis in Undergraduate Genomics Coursework: Field Study Findings and Guidelines
    Barbara Mirel
    Anuj Kumar
    Paige Nong
    Gang Su
    Fan Meng
    Journal of Science Education and Technology, 2016, 25 : 91 - 110
  • [50] Exploratory Spatial Data Analysis with gwpcorMapper: an Interactive Mapping Tool for Geographically Weighted Correlation and Partial Correlation
    Percival, J. E. H.
    Tsutsumida, N.
    Murakami, D.
    Yoshida, T.
    Nakaya, T.
    JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2022, 6 (01)