LSTM-based Deep Learning Models for Answer Ranking

被引:4
|
作者
Li, Zhenzhen [1 ]
Huang, Jiuming [1 ]
Zhou, Zhongcheng [1 ]
Zhang, Haoyu [1 ]
Chang, Shoufeng [2 ]
Huang, Zhijie [3 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China
[2] Beijing Satellite Nav Ctr, Beijing, Peoples R China
[3] Beijing Gaodi Informat Technol Co Ltd, Beijing, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
long short-term memory; learning to rank; Question Answering; hypernyms;
D O I
10.1109/DSC.2016.37
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The learning problem of ranking arises in many tasks, including the question answering, information retrieval, and movie recommendation. In these tasks, the ordering of the answers, documents or movies returned is a critical aspect of the system. Recently, deep learning approaches have gained a lot of attention from the research community and industry for their ability to automatically learn optimal feature representation for a given task. We aim to solve the answer ranking problem in practical question answering system with deep learning approaches. In this paper, we define a composite representation for questions and answers by combining convolutional neural network (CNN) with bidirectional long short-term memory (biLSTM) models, and learn a similarity function to relate them in a supervised way from the available training data. Considering the limited training data, we propose a hypernym strategy to get more general text pairs and test the effectiveness of different strategies. Experimental results on a public benchmark dataset from TREC demonstrate that our system outperforms previous work which requires syntactic features and some deep learning models.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 50 条
  • [31] LSTM-based Deep Learning Model for Civil Aircraft Position and Attitude Prediction Approach
    Yang, Kaiqiao
    Bi, Meina
    Liu, Yang
    Zhang, Yuxin
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8689 - 8694
  • [32] LSTM-Based Neural Network to Recognize Human Activities Using Deep Learning Techniques
    Sabbu, Sunitha
    Ganesan, Vithya
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [33] LSTM-Based Language Models for Spontaneous Speech Recognition
    Medennikov, Ivan
    Bulusheva, Anna
    SPEECH AND COMPUTER, 2016, 9811 : 469 - 475
  • [34] Air quality prediction using CNN plus LSTM-based hybrid deep learning architecture
    Gilik, Aysenur
    Ogrenci, Arif Selcuk
    Ozmen, Atilla
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (08) : 11920 - 11938
  • [35] Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture
    Wang, Zhengfeng
    Lei, Xiujuan
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [36] Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting
    Maryam Rahimzad
    Alireza Moghaddam Nia
    Hosam Zolfonoon
    Jaber Soltani
    Ali Danandeh Mehr
    Hyun-Han Kwon
    Water Resources Management, 2021, 35 : 4167 - 4187
  • [37] Performance Improvement of LSTM-based Deep Learning Model for Streamflow Forecasting Using Kalman Filtering
    Fatemeh Bakhshi Ostadkalayeh
    Saba Moradi
    Ali Asadi
    Alireza Moghaddam Nia
    Somayeh Taheri
    Water Resources Management, 2023, 37 : 3111 - 3127
  • [38] Performance Improvement of LSTM-based Deep Learning Model for Streamflow Forecasting Using Kalman Filtering
    Ostadkalayeh, Fatemeh Bakhshi
    Moradi, Saba
    Asadi, Ali
    Nia, Alireza
    Taheri, Somayeh
    WATER RESOURCES MANAGEMENT, 2023, 37 (08) : 3111 - 3127
  • [39] LSTM-based deep learning model for alkali activated binder mix design of clay soils
    Mohamed G. Arab
    Ahmed Maged
    Rajaa Rammal
    Salah Haridy
    Innovative Infrastructure Solutions, 2024, 9 (12)
  • [40] Deep reinforcement learning for base station switching scheme with federated LSTM-based traffic predictions
    Park, Hyebin
    Yoon, Seung Hyun
    ETRI JOURNAL, 2024, 46 (03) : 379 - 391