Fouling effects on rejection in the membrane filtration of natural waters

被引:187
|
作者
Schäfer, AI [1 ]
Fane, AG
Waite, TD
机构
[1] Univ New S Wales, UNESCO, Ctr Membrane Sci & Technol, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Ctr Water & Waste Technol, Sydney, NSW 2052, Australia
关键词
calcium; fouling; microfiltration; nanofiltration; ultrafiltration; natural organic matter; rejection;
D O I
10.1016/S0011-9164(00)90020-1
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Membrane processes in drinking water applications are micro- (MF), ultra- (UF) and nanofiltration (NF). These processes remove turbidity and bacteria (MF), viruses and macromolecules (UF) and small molecules and hardness (NF). Of particular concern in water treatment is the removal of natural organic matter (NOM) which contains potential disinfection by-product precursors. The presence of colloids, multivalent ions and organics in surface waters may cause substantial fouling of membranes. A study was carried out which looked at the rejection abilities of a range of membranes targeting hematite colloids (40-500 nm), NOM and cations, fouling conditions and cost of treatment of these processes with consideration of chemical pretreatment with ferric chloride [1]. In this paper the effect of membrane fouling on rejection is presented. The study was based on experiments with two MF membranes (GVWP, GVHP, 0.22 mum, Millipore), six UF membranes (1, 3, 5, 10, 30, 100 kDa, regenerated cellulose, Millipore), and four organic NF membranes (TFC-SR, TFC-S, TFC-ULP, CA-UF, Fluid Systems, US). Three different types of organics (IHSS humic acid, MSS fulvic acid and an Australian concentrated NOM) in a carbonate buffer containing calcium chloride and a background electrolyte were used. Experiments were carried out in perspex (MF, UF) and stainless steel (NF) stirred cells of a volume of 110-185 mt and a membrane area of 15.2-21.2x10(-4) m(2) at transmembrane pressures of 1, 1-3, and 5 bar for MF, UF, and NF, respectively. UF removes 10-95% of NOM depending on the molecular weight cut-off (MWCO) of the membrane. Pore sizes of <6 nm are required to remove about 80% of NOM, where a 6 nm pore size corresponds to a MWCO of about 10 kDa. Colloids are fully rejected. NF removes NOM effectively (70-95% as dissolved organic carbon (DOC) and 85-98% as UV absorbance). Cation rejection is very membrane dependent and varies for the investigated membrane types between 13 and 96% for calcium and 10-87% for sodium. Fouling was also dependent on pore size and was caused by large colloids (250 nm) or coagulant flocs in MF, small colloids, organic-calcium flocs and aggregates with a dense structure (formed slowly) in UF, and by a calcium-organic precipitate in NF. The fouling influenced the rejection of colloids in MF and that of NOM in UF and NF. If a highly charged layer was deposited on the NF membranes, cation rejection tvas also influenced. The characterisation of permeate organics revealed that low molecular weight acids passed through the NF membranes and that the rejection of these acids was also dependent on the deposit on the membrane. The mechanisms which can explain such an increase in rejection are different for the three membrane processes. In MF, pore plugging and cake formation was found responsible for fouling. This reduces the pore size and increases rejection. In UF, internal pore adsorption of calcium-organic flocs reduces the internal pore diameter and subsequently increases rejection. In NF, the key factor appears to the charge of the deposit. This was investigated with the deposition of a ferric chloride precipitate. If the precipitate was of high positive charge, the rejection of cations increased and that of negatively charged low molecular weight acids decreased compared to more neutral or negative precipitates. In essence, the rejection characteristics of membranes depend more on the fouling state of the membranes and the nature of the foulants than on the initial membrane characteristics.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 50 条
  • [31] On-site classification of manganese forms in natural waters by membrane filtration and chelating exchange
    Zih-Perényi, K
    Lásztity, A
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2005, 60 (03) : 385 - 392
  • [32] Sterile filtration of oncolytic viruses: An analysis of effects of membrane morphology on fouling and product recovery
    Shoaebargh, Shabnam
    Gough, Ian
    Medina, Maria Fe
    Smith, Adam
    van der Heijden, Joris
    Lichty, Brian D.
    Bell, John C.
    Latulippe, David R.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2018, 548 : 239 - 246
  • [33] Membrane fouling during filtration of milk - a microstructural study
    James, BJ
    Jing, Y
    Chen, MD
    [J]. JOURNAL OF FOOD ENGINEERING, 2003, 60 (04) : 431 - 437
  • [34] Application of a metal membrane for rainwater utilization: filtration characteristics and membrane fouling
    Kim, RH
    Lee, S
    Kim, JO
    [J]. DESALINATION, 2005, 177 (1-3) : 121 - 132
  • [35] Novel filtration mode for fouling limitation in membrane bioreactors
    Wu, Jinling
    Le-Clech, Pierre
    Stuetz, Richard M.
    Fane, Anthony G.
    Chen, Vicki
    [J]. WATER RESEARCH, 2008, 42 (14) : 3677 - 3684
  • [36] Fouling of ultrafiltration membrane during secondary effluent filtration
    Tang, Chuyang Y.
    Peng, Yijin
    [J]. DESALINATION AND WATER TREATMENT, 2011, 30 (1-3) : 289 - 294
  • [37] MEMBRANE FOULING MITIGATION IN WATER FILTRATION USING PIEZOELECTRICS
    Aronu, Obinna
    Abramowitz, Harvey
    Nnanna, Agbai George
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 8, 2019,
  • [38] Membrane filtration device for studying compression of fouling layers in membrane bioreactors
    Jorgensen, Mads Koustrup
    Bugge, Thomas Vistisen
    Larsen, Poul
    Nielsen, Per Halkjaer
    Christensen, Morten Lykkegaard
    [J]. PLOS ONE, 2017, 12 (07):
  • [39] Microscopic mechanism of membrane fouling in micro-filtration
    Cao, Zhanping
    Zhang, Jingli
    Lin, Ligang
    Xie, Liping
    [J]. DESALINATION AND WATER TREATMENT, 2016, 57 (15) : 6652 - 6657
  • [40] Membrane fouling behavior during filtration of sludge supernatant
    Yang, Fenglin
    Shi, Baoqiang
    Meng, Fangang
    Zhang, Hanmin
    [J]. ENVIRONMENTAL PROGRESS, 2007, 26 (01): : 86 - 93