Novel, Stable Catholyte for Aqueous Organic Redox Flow Batteries: Symmetric Cell Study of Hydroquinones with High Accessible Capacity

被引:16
|
作者
Yang, Xian [1 ,2 ,3 ]
Garcia, Sergio Navarro [4 ]
Janoschka, Tobias [3 ]
Konya, Denes [4 ]
Hager, Martin D. [1 ,2 ]
Schubert, Ulrich S. [1 ,2 ]
机构
[1] Friedrich Schiller Univ Jena, Lab Organ & Macromole Chem IOMC, Humboldtst 10, D-07743 Jena, Germany
[2] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, Philosophenweg 7a, D-07743 Jena, Germany
[3] JenaBatter GmbH, Otto Schott Str 15, D-07745 Jena, Germany
[4] Res Ctr Nat Sci, Magyar Tudosok Korutja 2, H-1117 Budapest, Hungary
来源
MOLECULES | 2021年 / 26卷 / 13期
基金
欧盟地平线“2020”;
关键词
hydroquinone; catholyte; stability; symmetric cell study; redox flow batteries; energy storage; ENERGY-STORAGE; DENSITY; POLYMER; SAFE;
D O I
10.3390/molecules26133823
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Owing to their broad range of redox potential, quinones/hydroquinones can be utilized for energy storage in redox flow batteries. In terms of stability, organic catholytes are more challenging than anolytes. The two-electron transfer feature adds value when building all-quinone flow battery systems. However, the dimerization of quinones/hydroquinones usually makes it difficult to achieve a full two-electron transfer in practical redox flow battery applications. In this work, we designed and synthesized four new hydroquinone derivatives bearing morpholinomethylene and/or methyl groups in different positions on the benzene ring to probe molecular stability upon battery cycling. The redox potential of the four molecules were investigated, followed by long-term stability tests using different supporting electrolytes and cell cycling methods in a symmetric flow cell. The derivative with two unoccupied ortho positions was found highly unstable, the cell of which exhibited a capacity decay rate of similar to 50% per day. Fully substituted hydroquinones turned out to be more stable. In particular, 2,6-dimethyl-3,5-bis(morpholinomethylene)benzene-1,4-diol (asym-O-5) displayed a capacity decay of only 0.45%/day with four-week potentiostatic cycling at 0.1 M in 1 M H3PO4. In addition, the three fully substituted hydroquinones displayed good accessible capacity of over 82%, much higher than those of conventional quinone derivatives.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Readily Accessible M-Ferrocenyl-Phenyl Sulfonate as Novel Cathodic Electrolyte for Aqueous Organic Redox Flow Batteries
    Fang, Dawei
    Zheng, Junzhi
    Li, Xi
    Wang, Diandian
    Yang, Yuxuan
    Liu, Zhuling
    Song, Zongren
    Jing, Minghua
    BATTERIES-BASEL, 2023, 9 (05):
  • [22] A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries
    Hollas, Aaron
    Wei, Xiaoliang
    Murugesan, Vijayakumar
    Nie, Zimin
    Li, Bin
    Reed, David
    Liu, Jun
    Sprenkle, Vincent
    Wang, Wei
    NATURE ENERGY, 2018, 3 (06): : 508 - 514
  • [23] A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries
    Aaron Hollas
    Xiaoliang Wei
    Vijayakumar Murugesan
    Zimin Nie
    Bin Li
    David Reed
    Jun Liu
    Vincent Sprenkle
    Wei Wang
    Nature Energy, 2018, 3 : 508 - 514
  • [24] Carboxyl-Functionalized TEMPO Catholyte Enabling High-Cycling-Stability and High-Energy-Density Aqueous Organic Redox Flow Batteries
    Liu, Bin
    Tang, Chun Wai
    Jiang, Haoran
    Jia, Guochen
    Zhao, Tianshou
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (18): : 6258 - 6265
  • [25] High energy density anolyte for aqueous organic redox flow batteries
    Wang, Wei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [26] Tracking and Tackling the Capacity Fading in Viologen based Aqueous Organic Redox Flow Batteries
    Mohapatra, Sandeep Kumar
    Ramanujam, Kothandaraman
    Sethuraman, Sankararaman
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (01)
  • [27] Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries
    Shiqiang Huang
    Hang Zhang
    Manohar Salla
    Jiahao Zhuang
    Yongfeng Zhi
    Xun Wang
    Qing Wang
    Nature Communications, 13
  • [28] Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries
    Huang, Shiqiang
    Zhang, Hang
    Salla, Manohar
    Zhuang, Jiahao
    Zhi, Yongfeng
    Wang, Xun
    Wang, Qing
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [29] Thienoviologen anolytes for aqueous organic redox flow batteries with simultaneously enhanced capacity utilization and capacity retention
    Liu, Xu
    Zhang, Xuri
    Li, Guoping
    Zhang, Sikun
    Zhang, Bingjie
    Ma, Wenqiang
    Wang, Zengrong
    Zhang, Yueyan
    He, Gang
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (18) : 9830 - 9836
  • [30] Catholyte engineering to release the capacity of iodide for high-energy-density iodine-based redox flow batteries
    Lu, Bo
    Yang, Minghui
    Ding, Mei
    Yan, Su
    Xiang, Weizhe
    Cheng, Yuanhang
    Fu, Hu
    Xu, Zhizhao
    Jia, Chuankun
    SUSMAT, 2023, 3 (04): : 522 - 532