Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow

被引:103
|
作者
Pringle, Chris C. T. [1 ]
Kerswell, Rich R. [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
关键词
D O I
10.1103/PhysRevLett.99.074502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
New families of three-dimensional nonlinear traveling waves are discovered in pipe flow. In contrast with known waves [H. Faisst and B. Eckhardt, Phys. Rev. Lett. 91, 224502 (2003); H. Wedin and R. R. Kerswell, J. Fluid Mech. 508, 333 (2004)], they possess no discrete rotational symmetry and exist at a significantly lower Reynolds numbers (Re). First to appear is a mirror-symmetric traveling wave which is born in a saddle node bifurcation at Re=773. As Re increases, "asymmetric" modes arise through a symmetry-breaking bifurcation. These look to be a minimal coherent unit consisting of one slow streak sandwiched between two fast streaks located preferentially to one side of the pipe. Helical and nonhelical rotating waves are also found, emphasizing the richness of phase space even at these very low Reynolds numbers.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Accessible information in three pure mirror-symmetric qubit states
    Frey, MR
    PHYSICAL REVIEW A, 2006, 73 (03):
  • [22] ASYMPTOTIC INVESTIGATION OF THE RAPID GROWTH IN THE SECOND MOMENT OF A MAGNETIC FIELD IN A MIRROR-SYMMETRIC FLOW.
    Artamonova, O.V.
    Sokolov, D.D.
    Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizik, 1986, 41 (03): : 7 - 13
  • [23] Experimental observation of nonlinear traveling waves in turbulent pipe flow
    Hof, B
    van Doorne, CWH
    Westerweel, J
    Nieuwstadt, FTM
    Faisst, H
    Eckhardt, B
    Wedin, H
    Kerswell, RR
    Waleffe, F
    SCIENCE, 2004, 305 (5690) : 1594 - 1598
  • [24] Wavelength-flattened directional couplers for mirror-symmetric interferometers
    Tormen, M
    Cherchi, M
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (12) : 4387 - 4392
  • [25] Asymptotic analysis of a kinematic dynamo in a mirror-symmetric magnetic field
    Yushkov, E. V.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2015, 109 (04): : 450 - 461
  • [26] LORENTZ TYPE QUADRATIC EQUATIONS IN A MIRROR-SYMMETRIC GYROTROPIC MEDIUM
    KAZYULIN, AF
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1969, 14 (03): : 459 - &
  • [27] Mirror-Symmetric Patterning of Topological Insulator Reverses Photogalvanic Currents
    Sun, Xinxing
    Adamo, Giorgio
    Eginligil, Mustafa
    Krishnamoorthy, Harish N. S.
    Zheludev, Nikolay, I
    Soci, Cesare
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [28] Minimal surfaces on mirror-symmetric frames: a fluid dynamics analogy
    Alimov, Mars M.
    Bazilevsky, Alexander V.
    Kornev, Konstantin G.
    JOURNAL OF FLUID MECHANICS, 2020, 897
  • [29] Mirror-symmetric tonotopic maps in human primary auditory cortex
    Formisano, E
    Kim, DS
    Di Salle, F
    van de Moortele, PF
    Ugurbil, K
    Goebel, R
    NEURON, 2003, 40 (04) : 859 - 869
  • [30] Intrinsic mode coupling in mirror-symmetric whispering gallery resonators
    Woska, Simon
    Rebholz, Lukas
    Rietz, Pascal
    Kalt, Heinz
    OPTICS EXPRESS, 2022, 30 (18) : 32847 - 32860