Quantitative stability analysis of optimal solutions in PDE-constrained optimization

被引:9
|
作者
Brandes, Kerstin
Griesse, Roland
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
[2] Univ Bayreuth, Lehrstuhl Ingenieurmath, D-95440 Bayreuth, Germany
关键词
PDE-constrained optimization; parametric sensitivity analysis; stability; singular value decomposition;
D O I
10.1016/j.cam.2006.08.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
PDE-constrained optimization problems under the influence of perturbation parameters are considered. A quantitative stability analysis for local optimal solutions is performed. The perturbation directions of greatest impact on an observed quantity are characterized using the singular value decomposition of a certain linear operator. An efficient numerical method is proposed to compute a partial singular value decomposition for discretized problems, with an emphasis on infinite-dimensional parameter and observation spaces. Numerical examples are provided. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:908 / 926
页数:19
相关论文
共 50 条
  • [1] OPTIMAL SOLVERS FOR PDE-CONSTRAINED OPTIMIZATION
    Rees, Tyrone
    Dollar, H. Sue
    Wathen, Andrew J.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 271 - 298
  • [2] PDE-constrained optimization in medical image analysis
    Mang, Andreas
    Gholami, Amir
    Davatzikos, Christos
    Biros, George
    [J]. OPTIMIZATION AND ENGINEERING, 2018, 19 (03) : 765 - 812
  • [3] PDE-constrained optimization in medical image analysis
    Andreas Mang
    Amir Gholami
    Christos Davatzikos
    George Biros
    [J]. Optimization and Engineering, 2018, 19 : 765 - 812
  • [4] Algorithms for PDE-constrained optimization
    Herzog, Roland
    Kunisch, Karl
    [J]. GAMM Mitteilungen, 2010, 33 (02) : 163 - 176
  • [5] PDE-CONSTRAINED OPTIMIZATION FOR NUCLEAR MECHANICS
    Kesenci, Yekta
    Boquet-Pujadas, Aleix
    van Bodegraven, Emma
    Etienne-Manneville, Sandrine
    Re, Elisabeth Labruye
    Olivo-Marin, Jean-Christophe
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2192 - 2195
  • [6] Parallel algorithms for PDE-constrained optimization
    Akcelik, Volkan
    Biros, George
    Ghattas, Omar
    Hill, Judith
    Keyes, David
    Waanders, Bart van Bloemen
    [J]. PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, 2006, : 291 - 322
  • [7] Numerical sensitivity analysis for the quantity of interest in PDE-constrained optimization
    Griesse, Roland
    Vexler, Boris
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01): : 22 - 48
  • [8] HYPERDIFFERENTIAL SENSITIVITY ANALYSIS OF UNCERTAIN PARAMETERS IN PDE-CONSTRAINED OPTIMIZATION
    Hart, Joseph
    Waanders, Bart van Bloemen
    Herzog, Roland
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2020, 10 (03) : 225 - 248
  • [9] PDE-constrained optimization with error estimation and control
    Hicken, J. E.
    Alonso, J. J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 263 : 136 - 150
  • [10] A MESHFREE METHOD FOR A PDE-CONSTRAINED OPTIMIZATION PROBLEM
    Hoff, Daniel
    Wendland, Holger
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) : 1896 - 1917