HYPERDIFFERENTIAL SENSITIVITY ANALYSIS OF UNCERTAIN PARAMETERS IN PDE-CONSTRAINED OPTIMIZATION

被引:14
|
作者
Hart, Joseph [1 ]
Waanders, Bart van Bloemen [1 ]
Herzog, Roland [2 ]
机构
[1] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, POB 5800, Albuquerque, NM 87123 USA
[2] Tech Univ Chemnitz, Fac Math, D-09107 Chemnitz, Germany
关键词
sensitivity analysis; PDE-constrained optimization; randomized linear algebra; low rank approximations; REACTION-DIFFUSION SYSTEM; ALGORITHMS; STATE; LINK;
D O I
10.1615/Int.J.UncertaintyQuantification.2020032480
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many problems in engineering and sciences require the solution of large scale optimization constrained by partial differential equations (PDEs). Though PDE-constrained optimization is itself challenging, most applications pose additional complexity, namely, uncertain parameters in the PDEs. Uncertainty quantification (UQ) is necessary to characterize, prioritize, and study the influence of these uncertain parameters. Sensitivity analysis, a classical tool in UQ, is frequently used to study the sensitivity of a model to uncertain parameters. In this article, we introduce "hyperdifferential sensitivity analysis" which considers the sensitivity of the solution of a PDE-constrained optimization problem to uncertain parameters. Our approach is a goal-oriented analysis which may be viewed as a tool to complement other UQ methods in the service of decision making and robust design. We formally define hyperdifferential sensitivity indices and highlight their relationship to the existing optimization and sensitivity analysis literatures. Assuming the presence of low rank structure in the parameter space, computational efficiency is achieved by leveraging a generalized singular value decomposition in conjunction with a randomized solver which converts the computational bottleneck of the algorithm into an embarrassingly parallel loop. Two multiphysics examples, consisting of nonlinear steady state control and transient linear inversion, demonstrate efficient identification of the uncertain parameters which have the greatest influence on the optimal solution.
引用
收藏
页码:225 / 248
页数:24
相关论文
共 50 条
  • [1] A Multigrid Solver for PDE-Constrained Optimization with Uncertain Inputs
    Ciaramella, Gabriele
    Nobile, Fabio
    Vanzan, Tommaso
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (01)
  • [2] Numerical sensitivity analysis for the quantity of interest in PDE-constrained optimization
    Griesse, Roland
    Vexler, Boris
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01): : 22 - 48
  • [3] PDE-constrained optimization in medical image analysis
    Andreas Mang
    Amir Gholami
    Christos Davatzikos
    George Biros
    Optimization and Engineering, 2018, 19 : 765 - 812
  • [4] PDE-constrained optimization in medical image analysis
    Mang, Andreas
    Gholami, Amir
    Davatzikos, Christos
    Biros, George
    OPTIMIZATION AND ENGINEERING, 2018, 19 (03) : 765 - 812
  • [5] PDE-Constrained Optimal Control Problems with Uncertain Parameters using SAGA
    Martin, Matthieu
    Nobile, Fabio
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (03): : 979 - 1012
  • [6] Algorithms for PDE-constrained optimization
    Herzog R.
    Kunisch K.
    GAMM Mitteilungen, 2010, 33 (02) : 163 - 176
  • [7] Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters
    Martin, Matthieu
    Krumscheid, Sebastian
    Nobile, Fabio
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (04): : 1599 - 1633
  • [8] PDE-CONSTRAINED OPTIMIZATION FOR NUCLEAR MECHANICS
    Kesenci, Yekta
    Boquet-Pujadas, Aleix
    van Bodegraven, Emma
    Etienne-Manneville, Sandrine
    Re, Elisabeth Labruye
    Olivo-Marin, Jean-Christophe
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2192 - 2195
  • [9] OPTIMAL SOLVERS FOR PDE-CONSTRAINED OPTIMIZATION
    Rees, Tyrone
    Dollar, H. Sue
    Wathen, Andrew J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 271 - 298
  • [10] Pde-constrained optimization for advanced materials
    Leugering G̈.
    Stingl M.
    GAMM Mitteilungen, 2010, 33 (02) : 209 - 229