Dynamics of a Mathematical Model of Cancer and Immunoediting Scenarios Under the Variation of the Immune Cell Activation Rate

被引:1
|
作者
Nova Martinez, Manuel Arturo [1 ]
Granada Diaz, Hector Andres [1 ]
Calderon Saavedra, Pablo Emilio [1 ]
机构
[1] Univ Tolima, Dept Matemat & Estadist, Ibague 730006299, Colombia
来源
关键词
Cancer tumour; immunoediting; collateral effect; bifurcation; limit cycle; BIFURCATION;
D O I
10.1142/S0218127422300142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article investigates the dynamics of cancer through a coupled system of three nonlinear ordinary differential equations. The evolution of the cancer tumour is examined under the variation of the immune cell activation parameter, and the study determines the values of this parameter that cause changes in the dynamics of this evolution; these changes are a consequence of two transcritical bifurcations and a supercritical Hopf bifurcation that exist in the system. These results reveal the range of immune cell activation for which tumour escape or tumour latency, or oscillatory behavior due to the appearance of limit cycles, is achieved. In addition, an optimal value is distinguished for which a minimum number of active immune response cells is sufficient to bring the tumour to a latent state.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A mathematical model for single cell cancer - Immune system dynamics
    Kolev, M
    Kozlowska, E
    Lachowicz, M
    MATHEMATICAL AND COMPUTER MODELLING, 2005, 41 (10) : 1083 - 1095
  • [2] A mouse model for cancer immunoediting with renal cell carcinoma to explore mechanisms of immune escape
    Bigger, Elizabeth
    Quigley, Michael
    Yang, Yiping
    JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (15)
  • [3] A mathematical model of immune competition related to cancer dynamics
    Brazzoli, Ilaria
    De Angelis, Elena
    Jabin, Pierre-Emmanuel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (06) : 733 - 750
  • [4] A Mathematical Model of the Dynamics of Cytokine Expression and Human Immune Cell Activation in Response to the Pathogen Staphylococcus aureus
    Talaei, Kian
    Garan, Steven A.
    Quintela, Barbara de Melo
    Olufsen, Mette S.
    Cho, Joshua
    Jahansooz, Julia R.
    Bhullar, Puneet K.
    Suen, Elliott K.
    Piszker, Walter J.
    Martins, Nuno R. B.
    Moreira de Paula, Matheus Avila
    dos Santos, Rodrigo Weber
    Lobosco, Marcelo
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2021, 11
  • [5] STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development
    Zhang, Xiao
    Chen, Yan
    Liu, Xi
    Li, Guoli
    Zhang, Shuo
    Zhang, Qi
    Cui, Zihan
    Qin, Minglu
    Simon, Hans-Uwe
    Terzic, Janos
    Kocic, Gordana
    Polic, Bojan
    Yin, Chengliang
    Li, Xiaobo
    Zheng, Tongsen
    Liu, Bing
    Zhu, Yuanyuan
    CANCER LETTERS, 2025, 612
  • [6] Modeling tumor immunoediting under immune selective pressure to inform neoantigen landscape dynamics for effective cancer vaccines
    George, Mariam Mathew
    Lihm, Jayon
    Choi, Hyejin
    Elhanati, Yuval
    Martis, Stephen
    Luksza, Marta
    Greenbaum, Benjamin
    Wolchok, Jedd D.
    Merghoub, Taha
    CANCER RESEARCH, 2024, 84 (06)
  • [7] Delay Dynamics of Cancer and Immune Cell Model
    Adongo, D.
    Fister, K. R.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2012, 7 (01) : 261 - 278
  • [8] A mathematical model for the dynamics of cancer hepatocytes under therapeutic actions
    Delitala, Marcello
    Lorenzi, Tommaso
    JOURNAL OF THEORETICAL BIOLOGY, 2012, 297 : 88 - 102
  • [9] Mathematical Model of Pancreatic Cancer Cell Dynamics Considering the Set of Sequential Mutations and Interaction with the Immune System
    Bratus, Alexander S.
    Leslie, Nicholas
    Chamo, Michail
    Grebennikov, Dmitry
    Savinkov, Rostislav
    Bocharov, Gennady
    Yurchenko, Daniil
    MATHEMATICS, 2022, 10 (19)
  • [10] Implications of a simple mathematical model to cancer cell population dynamics
    Garner, AL
    Lau, YY
    Jordan, DW
    Uhler, MD
    Gilgenbach, RM
    CELL PROLIFERATION, 2006, 39 (01) : 15 - 28