Image enhancement based on the statistics of visual representation

被引:28
|
作者
Huang, KQ
Wu, ZY
Wang, Q
机构
[1] Chinese Acad Sci, Inst Automat, NLPR, Beijing 100080, Peoples R China
[2] SE Univ, Dept Radio Engn, Nanjing 210096, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
image enhancement; visual representation; brightness; contrast;
D O I
10.1016/j.imavis.2004.07.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel algorithm to image enhancement that exploits the multi-scale wavelet and statistical characters of visual representation. Processing includes the global dynamic range (brightness) correction and local contrast adjustment, whose parameters are picked automatically by the information contained in the image itself. Experimental results show that the new algorithm outperforms other many existing image enhancement methods and is highly resilient to the effects of both the image-source variations. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 50 条
  • [41] A new pyramid-based color image representation for visual localization
    Urdiales, C.
    Dominguez, M.
    de Trazegnies, C.
    Sandoval, F.
    IMAGE AND VISION COMPUTING, 2010, 28 (01) : 78 - 91
  • [42] Scene graph captioner: Image captioning based on structural visual representation
    Xu, Ning
    Liu, An-An
    Liu, Jing
    Nie, Weizhi
    Su, Yuting
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 58 : 477 - 485
  • [43] Effective Image Representation Based on Bi-layer Visual Codebook
    Song, Yan
    Tang, Jinhui
    Li, Xia
    Tian, Qi
    Dai, Lirong
    2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 224 - 228
  • [44] Keyword Visual Representation for Image Retrieval and Image Annotation
    Nhu Van Nguyen
    Boucher, Alain
    Ogier, Jean-Marc
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (06)
  • [45] Quaternion representation based visual saliency for stereoscopic image quality assessment
    Wang, Xu
    Ma, Lin
    Kwong, Sam
    Zhou, Yu
    SIGNAL PROCESSING, 2018, 145 : 202 - 213
  • [46] Leveraging Deep Statistics for Underwater Image Enhancement
    Wang, Yang
    Cao, Yang
    Zhang, Jing
    Wu, Feng
    Zha, Zheng-Jun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (03)
  • [47] Infrared and Visible Image Fusion Based on Visual Saliency Map and Image Contrast Enhancement
    Liu, Yuanyuan
    Wu, Zhiyong
    Han, Xizhen
    Sun, Qiang
    Zhao, Jian
    Liu, Jianzhuo
    SENSORS, 2022, 22 (17)
  • [48] Evolving Order Statistics Filters for image enhancement
    Munteanu, C
    Rosa, A
    ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, 2001, : 288 - 291
  • [49] Image Enhancement Algorithms of terahertz Images Based on Quantum Probability. Statistics
    Zhu, Zhongbo
    Li, Xiaojun
    Tan, Qinggui
    Jiang, Wei
    Liang, Dong
    2018 43RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2018,
  • [50] Research on image enhancement algorithms of medical images based on quantum probability statistics
    Fu, Xiao-Wei
    Ding, Ming-Yue
    Zhou, Cheng-Ping
    Cai, Chao
    Sun, Yang-Guang
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (07): : 1590 - 1596