Clay-hydrogen and clay-cushion gas interfacial tensions: Implications for hydrogen storage

被引:64
|
作者
Yekeen, Nurudeen [1 ]
Al-Yaseri, Ahmed [2 ]
Negash, Berihun Mamo [3 ]
Ali, Muhammad [4 ]
Giwelli, Ausama [5 ]
Esteban, Lionel [5 ]
Sarout, Joel [5 ]
机构
[1] UCSI Univ, Fac Engn Technol & Built Environm, Dept Chem & Petr Engn, 1 Jalan Menara Gading,UCSI Hts Taman Connaught, Kuala Lumpur 56000, Malaysia
[2] King Fahd Univ Petr & Minerals, Coll Petr Engn & Geosci, Ctr Integrat Petr Res CIPR, Dhahran, Saudi Arabia
[3] Univ Teknol PETRONAS, Dept Petr Engn, Seri Iskandar 32610, Perak, Malaysia
[4] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Thuwal 23955, Saudi Arabia
[5] CSIRO Energy, Perth, Australia
关键词
Clay-gas interfacal tension; Clay minerals; Hydrogen; Carbon dioxide; Underground hydrogen storage; TRAPPING CAPACITY; WETTABILITY; PRESSURE; CO2; TEMPERATURE; ENERGY; QUARTZ; H-2; SUBSURFACE; INJECTION;
D O I
10.1016/j.ijhydene.2022.04.103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rock/fluid interfacial tension (gamma(rock-fluid)) govern the fluid flow dynamics, the injection/ withdrawal rates, the gas storage capacity, and containment integrity during gas (H-2, CO2, N-2) geo-storage. Clay-gas interfacial tension (gamma(clay-gas)) data, especially for the clay-H-2 (gamma(clay-H2)), the clay-N-2 (gamma(clay-N2)) and the clay-CO2 (gamma(clay-CO2)) systems, have rarely been reported in the literature due to the challenging nature of these measurements in the laboratory. In this study, Neumann's equation of state and Young-Laplace equation was combined to compute clay-gas and clay-brine interfacial tensions (IFT) parameters at realistic geo-storage temperature (333 K) and pressure (5-20 MPa). Our results show that at similar thermodynamic conditions: gamma(clay-H2) > gamma(clay-N2) > gamma(clay-CO2) . Our calculations also showed that: gamma(kaolinite-N2) > gamma(illite-N2) > gamma(montmorillonite-N2) , and gamma(kaolinite-CO2) > gamma(illite-CO2 )> gamma(montmorillonite-CO2) . In contrast, for hydrogen a negligible difference in gamma(clay-H2) was obtained for the three clay types, although, the IFT between clay minerals and brine in presence of hydrogen is different for these three clay types. Overall, computed gamma(clay-H2) values were higher than gamma(clay-N2) and gamma(clay-CO2) values, whereas computed clay-brine interfacial tension was lower in presence of hydrogen compared to carbon dioxide and nitrogen. These results suggest that nitrogen and carbon dioxide could be used as favorable cushion gas for maintaining formation pressure during underground hydrogen storage. We also demonstrated a remarkable relationship between clay/gas IFT and gas density that could serve as a helpful tool for quick estimation of rock-fluid interfacial tension. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:19155 / 19167
页数:13
相关论文
共 50 条
  • [21] Hydrogen storage in saline aquifers: The role of cushion gas for injection and production
    Heinemann, N.
    Scafidi, J.
    Pickup, G.
    Thaysen, E. M.
    Hassanpouryouzband, A.
    Wilkinson, M.
    Satterley, A. K.
    Booth, M. G.
    Edlmann, K.
    Haszeldine, R. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (79) : 39284 - 39296
  • [22] Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications
    Musyoka, N. M.
    Ren, J.
    Langmi, H. W.
    Rogers, D. E. C.
    North, B. C.
    Mathe, M.
    Bessarabov, D.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (04) : 494 - 503
  • [23] Role of Cushion Gas on Underground Hydrogen Storage in Depleted Oil Reservoirs
    Kanaani, Mahdi
    Sedaee, Behnam
    Asadian-Pakfar, Mojtaba
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [24] Optimizing underground hydrogen storage in aquifers: The impact of cushion gas type
    Saeed, Motaz
    Jadhawar, Prashant
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 (52) : 1537 - 1549
  • [25] Pore-scale binary diffusion behavior of Hydrogen-Cushion gas in saline aquifers for underground hydrogen Storage: Optimization of cushion gas type
    Jia, Zhihao
    Cao, Renyi
    Pu, Baobiao
    Dehghanpour, Hassan
    Cheng, Linsong
    Zhang, Qiuyue
    Awotunde, Abeeb A.
    FUEL, 2025, 381
  • [26] Simulation insights into wetting properties of hydrogen-brine-clay for hydrogen geo-storage
    Phan, Anh
    Barker, Viqui
    Hassanpouryouzband, Aliakbar
    Ho, Tuan A.
    JOURNAL OF ENERGY STORAGE, 2025, 112
  • [27] HYDROGEN CLAY PREPARATION AND ITS EFFECTS ON SOME CLAY PROPERTIES
    BAWEJA, AS
    MCLEAN, EO
    WILDING, LP
    SOIL SCIENCE, 1978, 126 (01) : 29 - 33
  • [28] Underground hydrogen storage in a partially depleted gas condensate reservoir: Influence of cushion gas
    Zamehrian, Mohammad
    Sedaee, Behnam
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 212
  • [29] Geochemical interactions in geological hydrogen Storage: The role of sandstone clay content
    Al-Yaseri, Ahmed
    Yekeen, Nurudeen
    Al-Mukainah, Hani
    Hassanpouryouzband, Aliakbar
    FUEL, 2024, 361
  • [30] Petrophysical Impacts of CO2 as Cushion Gas in Subsurface Hydrogen Storage
    Fatah, Ahmed
    Al-Yaseri, Ahmed
    ENERGY & FUELS, 2025,