Pseudostress-velocity formulation for incompressible Navier-Stokes equations

被引:18
|
作者
Cai, Zhiqiang [2 ]
Wang, Yanqiu [1 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
关键词
pseudostress-velocity formulation; Navier-Stokes equations; finite element method; mixed finite element; driven cavity; flow past cylinder; MIXED FINITE-ELEMENTS; DRIVEN CAVITY FLOW; LEAST-SQUARES; ELASTICITY PROBLEM; LINEAR ELASTICITY; MULTIGRID METHOD; CYLINDERS;
D O I
10.1002/fld.2077
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a numerical algorithm using the pseudostress-velocity formulation to solve incompressible Newtonian flows. The pseudostress-velocity formulation is a variation of the stress-velocity formulation, which does not require symmetric tensor spaces in the finite element discretization. Hence its discretization is greatly simplified. The discrete system is further decoupled into an H(div) problem for the pseudostress and a post-process resolving the velocity. This can be done conveniently by using the penalty method for steady-state flows or by using the time discretization for nonsteady-state flows. We apply this formulation to the 2D lid-driven cavity problem and study its grid convergence rate. Also, computational results of the time-dependent-driven cavity problem and the flow past rectangular problem are reported. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:341 / 356
页数:16
相关论文
共 50 条
  • [31] Boundary conditions for the vorticity velocity formulation of Navier-Stokes equations
    Ni, AL
    AIAA JOURNAL, 1996, 34 (02) : 416 - 418
  • [32] Viscous incompressible flows by the velocity-vorticity Navier-Stokes equations
    Depto. Matemáticas, UAM-Iztapalapa, 3er. Piso Ed. Diego Bricio, 09340 México D.F., Mexico
    不详
    CMES Comput. Model. Eng. Sci., 2007, 2 (73-83): : 73 - 83
  • [33] Viscous incompressible flows by the velocity-vorticity Navier-Stokes equations
    Nicolas, Alfredo
    Bermudez, Blanca
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2007, 20 (02): : 73 - 83
  • [34] Novel hybrid compact schemes for stream function-velocity formulation of the incompressible Navier-Stokes equations
    Yadav, Vivek S.
    Maurya, Vikas
    Maurya, Praveen K.
    Rajpoot, Manoj K.
    PHYSICS OF FLUIDS, 2023, 35 (01)
  • [35] Error estimates of pseudostress-velocity MFEM for optimal control problems governed by stokes equations
    Chen, Yanping
    Leng, Haitao
    Yang, Wendi
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 407 - 422
  • [36] An implicit monolithic formulation based on finite element formulation for incompressible Navier-Stokes equations
    Antunes, A. R. E.
    Lyra, P. R. M.
    Willmersdorf, R. B.
    Bastos, S. M. A.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2015, 37 (01) : 199 - 210
  • [37] Stabilized formulation of the Navier-Stokes equations
    Masud, A
    ENGINEERING MECHANICS: PROCEEDINGS OF THE 11TH CONFERENCE, VOLS 1 AND 2, 1996, : 1135 - 1138
  • [38] A WEIGHTED RESIDUAL FORMULATION FOR NUMERICAL-SOLUTIONS OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    FANG, Z
    PARASCHIVOIU, I
    MECHANICS RESEARCH COMMUNICATIONS, 1990, 17 (03) : 165 - 171
  • [39] A MULTIGRID METHOD FOR AN INVARIANT FORMULATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN GENERAL COORDINATES
    OOSTERLEE, CW
    WESSELING, P
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1992, 8 (10): : 721 - 734
  • [40] KRYLOV METHODS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    EDWARDS, WS
    TUCKERMAN, LS
    FRIESNER, RA
    SORENSEN, DC
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (01) : 82 - 102