A chaotic vibration energy harvester using magnetic material

被引:14
|
作者
Sato, Takahiro [1 ]
Igarashi, Hajime [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, Sapporo, Hokkaido 0600814, Japan
关键词
energy harvesting; electromagnetic harvester; wideband harvester; chaotic oscillation;
D O I
10.1088/0964-1726/24/2/025033
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper presents a new wideband electromagnetic vibration energy harvester (VEH) composed of a magnetic core embedded into the coil axis. The magnetic core generates a nonlinear magnetic force, which gives rise to the nonlinearity in the behavior of the VEH. Moreover, the magnetic core increases the flux linkage with the coil. These features improve the operational bandwidth and output power of the VEH. Numerical analysis and experimental measurements reveal that the operational bandwidth of the proposed VEH is over 30 Hz in which the output power is kept about 0.1 mW. Moreover, the proposed VEH operates by complicated oscillation due to nonlinear forces acting on the oscillator. Evaluation of the Lyapunov exponent for the measured oscillation suggests that the proposed VEH produces chaotic oscillation.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Properties of chaotic vibration energy harvester: comparison of numerical results with experiments
    Sugisawa, Takeshi
    Igarashi, Hajime
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2017, 30 (05)
  • [12] Electromagnetic vibration energy harvester using magnetic fluid as lubricant and liquid spring
    Yu, Jun
    Li, Decai
    Li, Shengbin
    Xiang, Ziyin
    He, Zidong
    Shang, Jie
    Wu, Yuanzhao
    Liu, Yiwei
    Li, Run-Wei
    ENERGY CONVERSION AND MANAGEMENT, 2023, 286
  • [13] Modeling and design of a vibration energy harvester using the magnetic shape memory effect
    Saren, A.
    Musiienko, D.
    Smith, A. R.
    Tellinen, J.
    Ullakko, K.
    SMART MATERIALS AND STRUCTURES, 2015, 24 (09)
  • [14] A Bistable Vibration Energy Harvester with Closed Magnetic Circuit
    Sato, Takahiro
    Sugisawa, Takeshi
    Igarashi, Hajime
    14TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2014), 2014, 557
  • [15] Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)
    Hu, J.
    Xu, F.
    Huang, A. Q.
    Yuan, F. G.
    SMART MATERIALS AND STRUCTURES, 2011, 20 (01)
  • [16] A bistable vibration energy harvester with closed magnetic circuit
    20145000316827
    (1) Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Sapporo, Kita-ku; 060-0814, Japan, 1600, (IOP Publishing Ltd):
  • [17] Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester
    Bouhedma, Sofiane
    Zheng, Yuhang
    Lange, Fred
    Hohlfeld, Dennis
    SENSORS, 2019, 19 (05)
  • [18] A MEMS Magnetic-Based Vibration Energy Harvester
    Shin, A.
    Radhakrishna, U.
    Yang, Yuechen
    Zhang, Q.
    Gu, L.
    Riehl, P.
    Chandrakasan, A. P.
    Lang, J. H.
    17TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2017), 2018, 1052
  • [19] A vibration energy harvester using diamagnetic levitation
    Palagummi, S.
    Yuan, F. G.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2013, 2013, 8688
  • [20] On the efficacy of charging a battery using a chaotic energy harvester
    Mohammed F. Daqaq
    Rafael S. Crespo
    Sohmyung Ha
    Nonlinear Dynamics, 2020, 99 : 1525 - 1537