A photoswitchable catalyst system for remote-controlled (co)polymerization in situ

被引:109
|
作者
Eisenreich, Fabian [1 ]
Kathan, Michael [1 ]
Dallmann, Andre [1 ]
Ihrig, Svante P. [1 ]
Schwaar, Timm [1 ,2 ]
Schmidt, Bernd M. [1 ,3 ]
Hecht, Stefan [1 ]
机构
[1] IRIS Adlershof Humboldt Univ Berlin, Dept Chem, Berlin, Germany
[2] Fed Inst Mat Res & Testing, Prot Anal Div, Berlin, Germany
[3] Heinrich Heine Univ Dusseldorf, Inst Organ & Macromol Chem, Dusseldorf, Germany
来源
NATURE CATALYSIS | 2018年 / 1卷 / 07期
基金
欧洲研究理事会;
关键词
RING-OPENING POLYMERIZATION; SWITCHABLE CATALYSIS; EPSILON-CAPROLACTONE; DYNAMIC CONTROL; VISIBLE-LIGHT; REDOX CONTROL; LACTIDE; COMPLEX; COPOLYMERIZATION; DIARYLETHENES;
D O I
10.1038/s41929-018-0091-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fundamental properties of a polymeric material are ultimately governed by its structure, which mainly relies on monomer composition and connection, topology, chain length, and polydispersity. Thus far, these structural characteristics are typically set ex situ by the specific polymerization procedure, eventually limiting the future design space for the creation of more sophisticated polymers. Herein, we report on a single photoswitchable catalyst system, which enables in situ remote control over the ring-opening polymerization of L-lactide and further allows regulation of the incorporation of trimethylene carbonate and delta-valerolactone monomers in copolymerizations. By implementing a phenol moiety into a diarylethene-type structure, we exploit light-induced keto-enol tautomerism to switch the hydrogen-bonding-mediated monomer activation reversibly ON and OFF. This general and versatile principle allows for exquisite external modulation of ground-state catalysis of a living polymerization process in a closed system by ultraviolet and visible light and should thereby facilitate the generation of new polymer structures.
引用
收藏
页码:516 / 522
页数:7
相关论文
共 50 条
  • [1] A photoswitchable catalyst system for remote-controlled (co)polymerization in situ
    Fabian Eisenreich
    Michael Kathan
    Andre Dallmann
    Svante P. Ihrig
    Timm Schwaar
    Bernd M. Schmidt
    Stefan Hecht
    Nature Catalysis, 2018, 1 : 516 - 522
  • [2] Remote-Controlled Exchange Rates by Photoswitchable Internal Catalysis of Dynamic Covalent Bonds
    Barsoum, David N.
    Kirinda, Viraj C.
    Kang, Boyeong
    Kalow, Julia A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (23) : 10168 - 10173
  • [3] REALIZATION OF A REMOTE-CONTROLLED ABSORBER SYSTEM
    TAKEUTCHI, F
    CAMON, J
    YUASA, T
    REVUE DE PHYSIQUE APPLIQUEE, 1968, 3 (03): : 281 - +
  • [4] Remote-controlled humanoid robot system
    Nishimura, T
    Takeno, J
    ROBOT AND HUMAN COMMUNICATION, PROCEEDINGS, 2001, : 551 - 555
  • [5] Remote-Controlled Diagnostics System for an Electronuclear Setup
    M. V. Maslova
    A. V. Karpukhin
    A. R. Kuz'michev
    N. M. Lustov
    A. A. Mal'tsev
    M. A. Mal'tsev
    A. G. Fedunov
    Atomic Energy, 2002, 93 : 832 - 835
  • [6] Remote-controlled diagnostics system for an electronuclear setup
    Maslova, MV
    Karpukhin, AV
    Kuz'michev, AR
    Lustov, NM
    Mal'tsev, AA
    Mal'tsev, MA
    Fedunov, AG
    ATOMIC ENERGY, 2002, 93 (04) : 832 - 835
  • [7] A compact remote-controlled underwater lidar system
    Zheng Yi
    Yang Kecheng
    Rao Jionghui
    Xia Min
    SOLID STATE LASERS XVI: TECHNOLOGY AND DEVICES, 2007, 6451
  • [8] A remote-controlled scrolling LED display system
    Ibrahim, Dogan
    ELECTRONICS WORLD, 2016, 122 (1957): : 36 - 38
  • [9] GAS ENCEPHALOGRAPHY WITH A REMOTE-CONTROLLED ISOCENTRIC SYSTEM
    BORIES, J
    NEURORADIOLOGY, 1973, 6 (01) : 39 - 44
  • [10] Remote-controlled hump
    Minkel, JR
    SCIENTIFIC AMERICAN, 2005, 292 (03) : 30 - 30