Higher order SVD based subspace estimation to improve multi-dimensional parameter estimation algorithms

被引:0
|
作者
Roemer, Florian [1 ]
Haardt, Martin [1 ]
Del Galdo, Giovanni [1 ]
机构
[1] Tech Univ Ilmenau, Commun Res Lab, PO Box 100565, D-98684 Ilmenau, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
MIMO channel modeling from channel sounder measurements requires the use of high-resolution parameter estimation algorithms. Multi-dimensional subspace-based methods, such as R-D Unitary ESPRIT, are frequently used for this task. Since the measurement data is multi-dimensional, current approaches require stacking the dimensions into one highly structured matrix. In the conventional subspace estimation step, e.g., via an SVD of this highly structured matrix, this structure is not exploited. In this paper, we define a measurement tensor and estimate the signal subspace through a higher order SVD. This allows us to exploit the structure inherent in the measurement data already in the first step of the algorithm which leads to better estimates of the signal subspace. We show how the concepts of forward-backward averaging and mapping onto the real-valued domain can be extended to tensors. As an example, we discuss the impact on the accuracy of the R-D Unitary ESPRIT algorithm. However, these new concepts can be applied to any multi-dimensional subspace-based parameter estimation scheme.
引用
收藏
页码:961 / +
页数:2
相关论文
共 50 条
  • [31] One-dimensional and multi-dimensional substring selectivity estimation
    Jagadish, HV
    Kapitskaia, O
    Ng, RT
    Srivastava, D
    [J]. VLDB JOURNAL, 2000, 9 (03): : 214 - 230
  • [32] Order and parameter estimation of time-varying system by subspace method
    Tamaoki, Morimichi
    Akizuki, Kageo
    Oura, Kunihiko
    [J]. Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), 2006, 157 (02): : 57 - 64
  • [33] One-dimensional and multi-dimensional substring selectivity estimation
    H.V. Jagadish
    Olga Kapitskaia
    Raymond T. Ng
    Divesh Srivastava
    [J]. The VLDB Journal, 2000, 9 : 214 - 230
  • [34] Order and parameter estimation of time-varying system by subspace method
    Tamaoki, Morimichi
    Akizuki, Kageo
    Oura, Kunihiko
    [J]. ELECTRICAL ENGINEERING IN JAPAN, 2006, 157 (02) : 57 - 64
  • [35] Improve spectral resolution of subspace-based DOA estimation algorithms using conventional beamforming by noise subspace projection
    Jin, H
    Chen, JW
    Liu, Z
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 2819 - 2822
  • [36] Higher order cumulant based parameter estimation in nonlinear time series models
    Markusson, O
    Hjalmarsson, H
    [J]. PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 4888 - 4889
  • [37] SPEECH ENHANCEMENT ALGORITHM BASED ON HIGHER-ORDER CUMULANTS PARAMETER ESTIMATION
    Dong, Jing
    Wei, Xiaopeng
    Zhang, Qiang
    Zhao, Lasheng
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (09): : 2725 - 2733
  • [38] Sample Length-adaptive Prediction Scheme for Parameter Estimation in Multi-dimensional Rate Control
    Yang, Na
    Mao, Qin
    [J]. 2016 3RD INTERNATIONAL CONFERENCE ON SMART MATERIALS AND NANOTECHNOLOGY IN ENGINEERING (SMNE 2016), 2016, : 270 - 274
  • [39] COMPUTATIONALLY EFFICIENT ESTIMATION OF MULTI-DIMENSIONAL SPECTRAL LINES
    Sward, Johan
    Adalbjornsson, Stefan Ingi
    Jakobsson, Andreas
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4885 - 4889
  • [40] Estimation of the Maximum Domination Value in Multi-dimensional Data
    Tiakas, Eleftherios
    Papadopoulos, Apostolos N.
    Manolopoulos, Yannis
    [J]. ADVANCES IN DATABASES AND INFORMATION SYSTEMS, 2010, 6295 : 505 - 519