Higher order SVD based subspace estimation to improve multi-dimensional parameter estimation algorithms

被引:0
|
作者
Roemer, Florian [1 ]
Haardt, Martin [1 ]
Del Galdo, Giovanni [1 ]
机构
[1] Tech Univ Ilmenau, Commun Res Lab, PO Box 100565, D-98684 Ilmenau, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
MIMO channel modeling from channel sounder measurements requires the use of high-resolution parameter estimation algorithms. Multi-dimensional subspace-based methods, such as R-D Unitary ESPRIT, are frequently used for this task. Since the measurement data is multi-dimensional, current approaches require stacking the dimensions into one highly structured matrix. In the conventional subspace estimation step, e.g., via an SVD of this highly structured matrix, this structure is not exploited. In this paper, we define a measurement tensor and estimate the signal subspace through a higher order SVD. This allows us to exploit the structure inherent in the measurement data already in the first step of the algorithm which leads to better estimates of the signal subspace. We show how the concepts of forward-backward averaging and mapping onto the real-valued domain can be extended to tensors. As an example, we discuss the impact on the accuracy of the R-D Unitary ESPRIT algorithm. However, these new concepts can be applied to any multi-dimensional subspace-based parameter estimation scheme.
引用
收藏
页码:961 / +
页数:2
相关论文
共 50 条
  • [1] Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems
    Haardt, Martin
    Roemer, Florian
    Del Galdo, Giovanni
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) : 3198 - 3213
  • [2] Multi-SVD based subspace estimation to improve angle estimation accuracy in bistatic MIMO radar
    Cheng, Yuanbing
    Yu, Rusheng
    Gu, Hong
    Su, Weimin
    [J]. SIGNAL PROCESSING, 2013, 93 (07) : 2003 - 2009
  • [3] ANALYTICAL PERFORMANCE ASSESSMENT FOR MULTI-DIMENSIONAL TENSOR-ESPRIT-TYPE PARAMETER ESTIMATION ALGORITHMS
    Roemer, Florian
    Becker, Hanna
    Haardt, Martin
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2598 - 2601
  • [4] Parameter estimation of multi-dimensional hidden Markov models - A scalable approach
    Joshi, D
    Li, J
    Wang, JZ
    [J]. 2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 2901 - 2904
  • [5] Determination of data matrix dimensions for subspace-based parameter estimation algorithms
    Ding, YN
    Vaccaro, RJ
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2547 - 2550
  • [6] Multi-dimensional sinusoidal order estimation using angles between subspaces
    Liu, Kefei
    Cao, Hui
    So, Hing Cheung
    Jakobsson, Andreas
    [J]. DIGITAL SIGNAL PROCESSING, 2017, 64 : 17 - 27
  • [7] Multi-dimensional substring selectivity estimation
    Jagadish, HV
    Kapitskaia, O
    Ng, RT
    Srivastava, D
    [J]. PROCEEDINGS OF THE TWENTY-FIFTH INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, 1999, : 387 - 398
  • [8] MULTI-DIMENSIONAL PARAMETRIC SPECTRAL ESTIMATION
    NIKIAS, CL
    RAGHUVEER, MR
    [J]. SIGNAL PROCESSING, 1985, 9 (03) : 191 - 205
  • [9] Subspace based Multi-Dimensional Model Order Selection in Colored Noise Scenarios
    Lustosa da Costa, Joao Paulo C.
    Roemer, Florian
    Schulz, Dominik
    de Sousa Junior, Rafael Timoteo
    [J]. 2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [10] On parameter estimation in population models II: Multi-dimensional processes and transient dynamics
    Ross, J. V.
    Pagendam, D. E.
    Pollett, P. K.
    [J]. THEORETICAL POPULATION BIOLOGY, 2009, 75 (2-3) : 123 - 132