Lipschitz Stability in Time for Riemann-Liouville Fractional Differential Equations

被引:14
|
作者
Hristova, Snezhana [1 ]
Tersian, Stepan [2 ]
Terzieva, Radoslava [1 ]
机构
[1] Univ Plovdiv Paisii Hilendarski, Fac Math & Informat, Plovdiv 4000, Bulgaria
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1113, Bulgaria
关键词
Riemann-Liouville fractional derivative; differential equations; Lipschitz stability in time;
D O I
10.3390/fractalfract5020037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A system of nonlinear fractional differential equations with the Riemann-Liouville fractional derivative is considered. Lipschitz stability in time for the studied equations is defined and studied. This stability is connected with the singularity of the Riemann-Liouville fractional derivative at the initial point. Two types of derivatives of Lyapunov functions among the studied fractional equations are applied to obtain sufficient conditions for the defined stability property. Some examples illustrate the results.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Ulam Stability of Fractional Impulsive Differential Equations with Riemann-Liouville Integral Boundary Conditions
    Abbas, Mohamed I.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2015, 50 (05): : 209 - 219
  • [32] Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions
    Mohamed I. Abbas
    Journal of Contemporary Mathematical Analysis, 2015, 50 : 209 - 219
  • [33] Ulam type stability for mixed Hadamard and Riemann-Liouville Fractional Stochastic Differential Equations
    Rhaima, Mohamed
    Mchiri, Lassaad
    Ben Makhlouf, Abdellatif
    Ahmed, Hassen
    CHAOS SOLITONS & FRACTALS, 2024, 178
  • [34] Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative
    Benchohra, Mouffak
    Bouriah, Soufyane
    Nieto, Juan J.
    DEMONSTRATIO MATHEMATICA, 2019, 52 (01) : 467 - 474
  • [35] Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations
    Dhage, Bapurao C.
    Graef, John R.
    Dhage, Shyam B.
    CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (01): : 23 - 36
  • [36] Stability analysis of fractional differential system with Riemann-Liouville derivative
    Qian, Deliang
    Li, Changpin
    Agarwal, Ravi P.
    Wong, Patricia J. Y.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 862 - 874
  • [37] DEVELOPMENT OF IDENTIFICATION METHODS FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Ovsienko, A. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2014, (01): : 134 - 144
  • [38] Initialized fractional differential equations with Riemann-Liouville fractional-order derivative
    M.L. Du
    Z.H. Wang
    The European Physical Journal Special Topics, 2011, 193 : 49 - 60
  • [39] Initialized fractional differential equations with Riemann-Liouville fractional-order derivative
    Du, M. L.
    Wang, Z. H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01): : 49 - 60
  • [40] Solvability and Optimal Controls of Semilinear Riemann-Liouville Fractional Differential Equations
    Pan, Xue
    Li, Xiuwen
    Zhao, Jing
    ABSTRACT AND APPLIED ANALYSIS, 2014,