The electrochemical performance of Li2CuO2-CuO composite-treated LiNi0.6Co0.2Mn0.2O2 cathode for all-solid-state lithium batteries

被引:7
|
作者
Jung, Su-Yeon [1 ]
Rajagopal, Rajesh [1 ]
Ryu, Kwang-Sun [1 ]
机构
[1] Univ Ulsan, Dept Chem, Ulsan 44776, South Korea
基金
新加坡国家研究基金会;
关键词
All-solid-state lithium batteries; Cathode; Solid electrolyte; Li(Ni0.6Co0.2Mn0.2)O-2; Li2CuO2-CuO; ION BATTERIES; ELECTROLYTE; SUPERIOR; ANODE;
D O I
10.1016/j.matchemphys.2021.124808
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
All-solid-state lithium batteries (ASSLB) are promising candidates for next-generation devices thanks to their safety and high energy density. However, there is an important problem at the interface between the cathode and solid electrolyte which must be addressed for ASSLB. To overcome this problem, the Li2CuO2-CuO composite-treated Li(Ni0.6Co0.2Mn0.2)O-2 (NCM) was used as the cathode with a sulfide-based solid electrolyte for ASSLB. However, the sulfide-based electrolyte has high interfacial resistance because of the side reaction caused by the interfacial instability between sulfide electrolytes and oxide cathodes. Li2CuO2-CuO composite is an effective material for treatment of ASSLB cathodes. In particular, the 1 wt.% Li2CuO2-CuO-treated NCM material showed higher capacity and better cycle retention than the bare NCM cathode material. Electrochemical impedance spectroscopy (EIS) analysis confirmed the reduction in interfacial resistance between the cathode and solid electrolyte. These indicators of the electrochemical performance demonstrate that Li2CuO2-CuO composite treatment is effective for the ASSLB cathode material.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2/reduced graphene oxide cathode materials for lithium-ion batteries
    Yue, Peng
    Wang, Zhixing
    Zhang, Qian
    Yan, Guochun
    Guo, Huajun
    Li, Xinhai
    IONICS, 2013, 19 (10) : 1329 - 1334
  • [22] Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries
    Yue, Peng
    Wang, Zhixing
    Peng, Wenjie
    Li, Lingjun
    Chen, Wei
    Guo, Huajun
    Li, Xinhai
    POWDER TECHNOLOGY, 2011, 214 (03) : 279 - 282
  • [23] Enhanced Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 by Expanded Graphite
    Peng, Zhenfeng
    Tang, Wenjie
    Peng, Yujia
    Qiu, Yang
    Shuai, Hantao
    Wang, Guixin
    ENERGY TECHNOLOGY, 2019, 7 (11)
  • [24] Effect of TiO2 Coating on Structure and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Material for Lithium-Ion Batteries
    Li, Lin
    Li, Zhongyu
    Kuang, Zhifan
    Zheng, Hao
    Yang, Minjian
    Liu, Jianwen
    Wang, Shiquan
    Liu, Hongying
    Materials, 2024, 17 (24)
  • [25] Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials
    Li, Wenming
    Tang, Weijian
    Qiu, Maoqin
    Zhang, Qiuge
    Irfan, Muhammad
    Yang, Zeheng
    Zhang, Weixin
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2020, 14 (06) : 988 - 996
  • [26] Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials
    Huang, Zhenjun
    Wang, Zhixing
    Zheng, Xiaobo
    Guo, Huajun
    Li, Xinhai
    Jing, Qun
    Yang, Zhihua
    ELECTROCHIMICA ACTA, 2015, 182 : 795 - 802
  • [27] Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials
    Wenming Li
    Weijian Tang
    Maoqin Qiu
    Qiuge Zhang
    Muhammad Irfan
    Zeheng Yang
    Weixin Zhang
    Frontiers of Chemical Science and Engineering, 2020, 14 : 988 - 996
  • [28] Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries
    Wu, Borong (wubr@bit.edu.cn), 1600, Elsevier Ltd (674):
  • [29] Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O2 cathode with enhanced electrochemical performance for Li-Ion batteries
    Chen, Xian
    Ma, Feng
    Li, Yuyu
    Liang, Jiashun
    Matthews, Bryan
    Sokolowski, Joshua
    Han, Jiantao
    Wu, Gang
    Lu, Xing
    Li, Qing
    ELECTROCHIMICA ACTA, 2018, 284 : 526 - 533
  • [30] The preparation and electrochemical study of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion battery
    Xin Tang
    Jing Li
    Min Zeng
    Yeju Huang
    Jianqiang Guo
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 848 - 856