Fermionic entanglement in the Lipkin model

被引:16
|
作者
Di Tullio, M. [1 ,2 ]
Rossignoli, R. [1 ,2 ,3 ]
Cerezo, M. [4 ]
Gigena, N. [1 ,2 ]
机构
[1] Univ Nacl La Plata, IFLP, CONICET, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Nacl La Plata, Dept Fis, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
[3] CIC, RA-1900 La Plata, Buenos Aires, Argentina
[4] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; PROBABILITY RELATIONS; QUANTUM; VALIDITY; VOLUME; STATES; PAIR; SET;
D O I
10.1103/PhysRevA.100.062104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We examine the fermionic entanglement in the ground state of the fermionic Lipkin model and its relation with bipartite entanglement. It is first shown that the one-body entanglement entropy, which quantifies the minimum distance to a fermionic Gaussian state, behaves similarly to the mean-field order parameter and is essentially proportional to the total bipartite entanglement between the upper and lower modes, a quantity meaningful only in the fermionic realization of the model. We also analyze the entanglement of the reduced state of four single-particle modes (two up-down pairs), showing that its fermionic concurrence is strongly peaked at the phase transition and behaves differently from the corresponding up-down entanglement. We finally show that the first measures and the up-down reduced entanglement can be correctly described through a basic mean-field approach supplemented with symmetry restoration, whereas the concurrence requires at least the inclusion of random-phase-approximation-type correlations for a proper prediction. Fermionic separability is also discussed.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Entanglement Dynamics in Lipkin Model
    Xia, Qi-Guo
    Liu, Li-Shu
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (07) : 2144 - 2149
  • [2] Entanglement Dynamics in Lipkin Model
    Qi-Guo Xia
    Li-Shu Liu
    [J]. International Journal of Theoretical Physics, 2015, 54 : 2144 - 2149
  • [3] Q-deformed fermionic Lipkin model at finite temperature
    Galetti, D
    Pimentel, BM
    Lima, CL
    Lunardi, JT
    [J]. PHYSICA A, 1997, 242 (3-4): : 501 - 508
  • [4] Multiparticle entanglement in the Lipkin-Meshkov-Glick model
    Cui, H. T.
    [J]. PHYSICAL REVIEW A, 2008, 77 (05):
  • [5] Thermal Entanglement in Lipkin-Meshkov-Glick Model
    Du Long
    Zhang Wen-Xin
    Ding Jia-Yan
    Wang Guo-Xiang
    Hou Jing-Min
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (01) : 61 - 66
  • [6] Entanglement dynamics in the Lipkin-Meshkov-Glick model
    Vidal, J
    Palacios, G
    Aslangul, C
    [J]. PHYSICAL REVIEW A, 2004, 70 (06): : 062304 - 1
  • [7] Thermal Entanglement in Lipkin-Meshkov-Glick Model
    杜龙
    张文新
    丁伽焱
    王国祥
    侯净敏
    [J]. Communications in Theoretical Physics, 2011, 56 (07) : 61 - 66
  • [8] Entanglement mean field theory: Lipkin–Meshkov–Glick Model
    Aditi Sen(De)
    Ujjwal Sen
    [J]. Quantum Information Processing, 2012, 11 : 675 - 683
  • [9] Many-particle entanglement in the gaped antiferromagnetic Lipkin model
    Unanyan, RG
    Ionescu, C
    Fleischhauer, M
    [J]. PHYSICAL REVIEW A, 2005, 72 (02):
  • [10] Entanglement mean field theory: Lipkin-Meshkov-Glick Model
    Sen, Aditi
    Sen, Ujjwal
    [J]. QUANTUM INFORMATION PROCESSING, 2012, 11 (03) : 675 - 683