Entanglement mean field theory: Lipkin-Meshkov-Glick Model

被引:3
|
作者
Sen, Aditi [1 ]
Sen, Ujjwal [1 ]
机构
[1] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
关键词
Quantum information; Quantum many-body physics; Mean field theory; Entanglement mean field theory; Quantum spin models; Lipkin-Meshkov-Glick model; BODY APPROXIMATION METHODS; INFINITELY COORDINATED SYSTEMS; QUANTUM SPIN SYSTEMS; RENORMALIZATION-GROUP; SOLVABLE MODEL; VALIDITY; TRANSITION; PHYSICS;
D O I
10.1007/s11128-011-0279-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement mean field theory is an approximate method for dealing with many-body systems, especially for the prediction of the onset of phase transitions. While previous studies have concentrated mainly on applications of the theory on short-range interaction models, we show here that it can be efficiently applied also to systems with long-range interaction Hamiltonians. We consider the (quantum) Lipkin-Meshkov-Glick spin model, and derive the entanglement mean field theory reduced Hamiltonian. A similar recipe can be applied to obtain entanglement mean field theory reduced Hamiltonians corresponding to other long-range interaction systems. We show, in particular, that the zero temperature quantum phase transition present in the Lipkin-Meshkov-Glick model can be accurately predicted by the theory.
引用
收藏
页码:675 / 683
页数:9
相关论文
共 50 条
  • [1] Entanglement mean field theory: Lipkin–Meshkov–Glick Model
    Aditi Sen(De)
    Ujjwal Sen
    Quantum Information Processing, 2012, 11 : 675 - 683
  • [2] Multiparticle entanglement in the Lipkin-Meshkov-Glick model
    Cui, H. T.
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [3] Thermal Entanglement in Lipkin-Meshkov-Glick Model
    Du Long
    Zhang Wen-Xin
    Ding Jia-Yan
    Wang Guo-Xiang
    Hou Jing-Min
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (01) : 61 - 66
  • [4] Entanglement dynamics in the Lipkin-Meshkov-Glick model
    Vidal, J
    Palacios, G
    Aslangul, C
    PHYSICAL REVIEW A, 2004, 70 (06): : 062304 - 1
  • [5] Thermal Entanglement in Lipkin-Meshkov-Glick Model
    杜龙
    张文新
    丁伽焱
    王国祥
    侯净敏
    Communications in Theoretical Physics, 2011, 56 (07) : 61 - 66
  • [6] Complexity in the Lipkin-Meshkov-Glick model
    Pal, Kunal
    Pal, Kuntal
    Sarkar, Tapobrata
    PHYSICAL REVIEW E, 2023, 107 (04)
  • [7] Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model
    Campbell, Steve
    De Chiara, Gabriele
    Paternostro, Mauro
    Palma, G. Massimo
    Fazio, Rosario
    PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [8] Universality of the negativity in the Lipkin-Meshkov-Glick model
    Wichterich, Hannu
    Vidal, Julien
    Bose, Sougato
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [9] On the exact solutions of the Lipkin-Meshkov-Glick model
    Debergh, N
    Stancu, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (15): : 3265 - 3276
  • [10] Thermodynamical limit of the Lipkin-Meshkov-Glick model
    Ribeiro, Pedro
    Vidal, Julien
    Mosseri, Remy
    PHYSICAL REVIEW LETTERS, 2007, 99 (05)