Computation of piecewise quadratic Lyapunov functions for hybrid systems

被引:850
|
作者
Johansson, M [1 ]
Rantzer, A [1 ]
机构
[1] Lund Inst Technol, Dept Automat Control, S-22100 Lund, Sweden
关键词
linear matrix inequalities; Lyapunov stability; piecewise linear systems;
D O I
10.1109/9.664157
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a computational approach to stability analysis of nonlinear and hybrid systems, The search for a piecewise quadratic Lyapunov function is formulated as a convex optimization problem in terms of linear matrix inequalities, The relation to frequency domain methods such as the circle and Popov criteria is explained, Several examples are included to demonstrate the flexibility and power of the approach.
引用
收藏
页码:555 / 559
页数:5
相关论文
共 50 条
  • [41] Quadratic Lyapunov functions for linear control systems with delays
    Barabanov, NE
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 5573 - 5578
  • [42] Quadratic Lyapunov functions for cooperative control of networked systems
    Qu, Zhihua
    Wang, Jing
    Li, Xin
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 2908 - +
  • [43] Coercive quadratic ISS Lyapunov functions for analytic systems
    Mironchenko, Andrii
    Schwenninger, Felix
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4699 - 4704
  • [44] On several composite quadratic Lyapunov functions for switched systems
    Hu, Tingshu
    Ma, Liqiang
    Lin, Zongli
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 116 - +
  • [45] Composite quadratic Lyapunov functions for constrained control systems
    Hu, TS
    Lin, ZL
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (03) : 440 - 450
  • [46] Global Stabilization of Nonlinear Systems by Quadratic Lyapunov Functions
    Zuber, I. E.
    Gelig, A. Kh.
    [J]. VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2010, 43 (01) : 49 - 53
  • [47] Piecewise polynomial Lyapunov functions for a class of switched nonlinear systems
    Coutinho, DF
    Trofino, A
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 4265 - 4270
  • [48] Piecewise-linear Lyapunov functions for linear stationary systems
    Bobyleva, ON
    [J]. AUTOMATION AND REMOTE CONTROL, 2002, 63 (04) : 540 - 549
  • [49] Piecewise-Linear Lyapunov Functions for Linear Stationary Systems
    O. N. Bobyleva
    [J]. Automation and Remote Control, 2002, 63 : 540 - 549
  • [50] THE VIABILITY OF SWITCHED NONLINEAR SYSTEMS WITH PIECEWISE SMOOTH LYAPUNOV FUNCTIONS
    Lv, Jianfeng
    Gao, Yan
    Zhao, Na
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (04) : 1825 - 1843