Oxidative Absorption of NO by Sodium Persulfate Coupled with Fe2+, Fe3O4, and H2O2

被引:13
|
作者
Gao, Xu-Chun [1 ,2 ,3 ,4 ]
Ma, Xiao-Xun [1 ,2 ,3 ]
Kang, Xue [1 ,2 ,3 ]
Shi, Ya [1 ,2 ,3 ]
机构
[1] NW Univ Xian, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China
[2] Minist Educ Adv Use Technol Shanbei Energy, Chem Engn Res Ctr, Xian 710069, Shaanxi, Peoples R China
[3] Shaanxi Res Ctr Engn Technol Clean Coal Convers, Xian 710069, Shaanxi, Peoples R China
[4] Yulin Univ, Coll Chem & Chem Engn, Yulin 719000, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
NO; oxidative absorption; persulfate; activation; ACTIVATED PERSULFATE; CHEMICAL OXIDATION; HYDROGEN-PEROXIDE; DEGRADATION; IRON; KINETICS; HEAT; ION; TRICHLOROETHYLENE; MECHANISM;
D O I
10.1002/ep.11971
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The oxidative absorption of nitric oxide (NO) by sodium persulfate (Na2S2O8) coupled with Fe2+, Fe3O4, and H2O2 was investigated in a bubble column reactor. Moreover, the effect of temperature on NO removal has been studied. At high temperatures, Fe2+ and Fe3O4 could effectively activate persulfate to form sulfate radicals, leading to high removal efficiency of NO. About 62% and 86% of NO were removed at 75 and 90 degrees C, respectively. Also, the optimum Fe2+ concentration for 0.2 mol L-1 persulfate was 1.0 mmol L-1 at 75 degrees C, under which the removal efficiency of NO was observed to be 89%. However, beyond 1.0 mmol L-1 Fe2+, the increase in Fe(2+)concentration was unfavorable to NO removal due to the scavenging of radicals by the excess Fe2+. Additionally, the presence of 2.85 mmol L-1 Fe3O4 increased the NO removal efficiency by 11% compared to that obtained in the absence of Fe3O4. It was proposed that activation ability of Fe3O4 to persulfate was attributed to Fe2+ on the Fe3O4 surface. Moreover, the addition of H2O2 led to the increase of the NO removal for some time, but followed by a drop because of the depletion of H2O2. It was suggested that H2O2 served as an oxidant rather than an activator of persulfate. (c) 2014 American Institute of Chemical Engineers Environ Prog, 2014 (c) 2014 American Institute of Chemical Engineers Environ Prog, 34: 117-124, 2015
引用
收藏
页码:117 / 124
页数:8
相关论文
共 50 条
  • [41] H2O2多点添加对Fe2+/H2O2体系ORP影响的研究
    周伟
    赵海谦
    高继慧
    吴少华
    工程热物理学报, 2016, 37 (03) : 613 - 619
  • [42] Degradation of malachite green by UV/H2O2 and UV/H2O2/Fe2+ processes: kinetics and mechanism
    Wilayat, Sumaira
    Fazil, Perveen
    Khan, Javed Ali
    Zada, Amir
    Ali Shah, Muhammad Ishaq
    Al-Anazi, Abdulaziz
    Shah, Noor S.
    Han, Changseok
    Ateeq, Muhammad
    FRONTIERS IN CHEMISTRY, 2024, 12
  • [43] Effects of melatonin on DNA damage induced by cyanide, kainate, glutathione/Fe3+/O2 or H2O2/Fe2+
    Yamamoto, H
    Mohanan, PV
    FASEB JOURNAL, 2001, 15 (05): : A1227 - A1227
  • [44] Localization of Fe2+ at an RTGR sequence within a DNA duplex explains preferential cleavage by Fe2+ and H2O2
    Rai, P
    Cole, TD
    Wemmer, DE
    Linn, S
    JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (05) : 1089 - 1101
  • [45] Mineralization and photodegradation of oxytetracycline by UV/H2O2/Fe2+ and UV/PS/Fe2+ process: quantification of radicals
    Ouahiba, Elkhir
    Chabani, Malika
    Assadi, Aymen Amin
    Abdeltif, Amrane
    Florence, Fourcade
    Souad, Bouafia
    RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (01) : 1 - 21
  • [46] Mineralization and photodegradation of oxytetracycline by UV/H2O2/Fe2+ and UV/PS/Fe2+ process: quantification of radicals
    Elkhir Ouahiba
    Malika Chabani
    Aymen Amin Assadi
    Amrane Abdeltif
    Fourcade Florence
    Bouafia Souad
    Research on Chemical Intermediates, 2023, 49 : 1 - 21
  • [47] Removal of Hg0 Using Vaporized H2O2 and an Additive Catalyzed by Fe3O4/Fe0
    Zhao, Yi
    Yuan, Bo
    Shen, Yao
    Mao, Xingzhou
    Hao, Runlong
    ENERGY & FUELS, 2018, 32 (08) : 8579 - 8586
  • [48] Fe3O4 and Fe3O4/Fe2+/Fe0 catalyzed Fenton-like process for advanced treatment of pharmaceutical wastewater
    Zhang, Nan
    Zhang, Guangming
    Huang, Ting
    Chong, Shan
    Liu, Yucan
    DESALINATION AND WATER TREATMENT, 2017, 93 : 100 - 108
  • [49] Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV and Fe(II) or Fe(III)/H2O2
    De Laat, J
    Gallard, H
    Ancelin, S
    Legube, B
    CHEMOSPHERE, 1999, 39 (15) : 2693 - 2706
  • [50] Method for fabricating Fe3O4 nanoparticles using H2O2 and its comparison with coprecipitation method
    Li, Fa-Shen
    Wang, Tao
    Wang, Ying
    Wuli Xuebao/Acta Physica Sinica, 2005, 54 (07): : 3100 - 3105