Thermal annealing of metamict titanite: A synchrotron radiation and optical birefringence study

被引:12
|
作者
Paulmann, C
Bismayer, U
Groat, LA
机构
[1] Univ Hamburg, Ist Mineral & Petrog, D-20146 Hamburg, Germany
[2] Univ British Columbia, Dept Geophys, Vancouver, BC V5Z 1M9, Canada
来源
ZEITSCHRIFT FUR KRISTALLOGRAPHIE | 2000年 / 215卷 / 11期
关键词
D O I
10.1524/zkri.2000.215.11.678
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The thermal annealing behaviour of metamict titanite from Cardiff, Canada, which shows moderate structural damage from the alpha -decay of radiogenic elements (U, Th) has been studied using single-crystal syn chrotron radiation and optical-birefringence techniques. Progressive and isothermal annealing experiments yield a temperature-dependent response in the diffraction and optical signals. The low-temperature regime (<673 K) is characterized by a preferred annealing of Frenkel-defects which results in small changes of the unit-cell volume and the Bragg-intensities on a time-scale of several hours. On constant heating at higher temperatures, metamict titanite displays two-stage kinetics with most rapid effects during the first two hours of annealing and less significant changes after the initial annealing period. Fast annealing of Frenkel defects occurs first, followed by recrystallization of more damaged regions. Single-crystal studies reveal lower temperatures for pronounced annealing effects than previously reported in powder-diffraction studies (ca. 100 K).
引用
收藏
页码:678 / 682
页数:5
相关论文
共 50 条
  • [31] 57Fe Mossbauer study of one-hour annealing in argon of radiation damage in metamict gadolinite from Ytterby
    Malczewski, D
    HYPERFINE INTERACTIONS, 2002, 141 (1-4): : 337 - 343
  • [32] Radiation resistant optical fiber with a high birefringence
    Voloshin, V. V.
    Vorob'ev, I. L.
    Ivanov, G. A.
    Kolosovskii, A. O.
    Chamorovskii, Yu. K.
    Butov, O. V.
    Golant, K. M.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2009, 54 (07) : 847 - 851
  • [33] Radiation resistant optical fiber with a high birefringence
    V. V. Voloshin
    I. L. Vorob’ev
    G. A. Ivanov
    A. O. Kolosovskii
    Yu. K. Chamorovskii
    O. V. Butov
    K. M. Golant
    Journal of Communications Technology and Electronics, 2009, 54 : 847 - 851
  • [34] OPTICAL SYNCHROTRON-CERENKOV RADIATION
    RYNNE, TM
    ERBER, T
    APPLIED PHYSICS LETTERS, 1979, 35 (10) : 752 - 754
  • [35] Synchrotron Radiation Sources and Optical Devices
    Cocco, D.
    Zangrando, M.
    MAGNETISM AND SYNCHROTRON RADIATION: NEW TRENDS, 2010, 133 : 127 - 144
  • [36] Radiation resistance of optical materials against synchrotron radiation
    Günster, S
    Blaschke, H
    Ristau, D
    Gatto, A
    Heber, J
    Kaiser, N
    Diviacco, B
    Marsi, M
    Trovò, M
    Sarto, F
    Scaglione, S
    Masetti, E
    LASER-INDUCED DAMAGE IN OPTICAL MATERIALS: 2002 AND 7TH INTERNATIONAL WORKSHOP ON LASER BEAM AND OPTICS CHARACTERIZATION, 2003, 4932 : 422 - 428
  • [37] ENHANCEMENT OF BIREFRINGENCE IN POLARIZATION-MAINTAINING FIBERS BY THERMAL ANNEALING
    OURMAZD, A
    BIRCH, RD
    VARNHAM, MP
    PAYNE, DN
    TARBOX, EJ
    ELECTRONICS LETTERS, 1983, 19 (04) : 143 - 144
  • [38] Synchrotron radiation contributions to optical diffraction radiation measurements
    Naumenko, GA
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 201 (01): : 184 - 190
  • [39] Study of optical spectra of YAG single crystals using synchrotron radiation
    Harutunyan, V.V.
    Hakhverdyan, E.A.
    Babayan, A.K.
    Gevorkyan, V.A.
    Makhov, V.N.
    Surface Investigation X-Ray, Synchrotron and Neutron Techniques, 2000, 15 (11): : 1607 - 1612
  • [40] An improved algorithm for thermal compensation of synchrotron radiation optical mirrors based on Hessian matrix
    Li, Tong
    Zhang, Haipeng
    Jin, Limin
    Zhu, Wanqian
    Chen, Jiahua
    Xue, Song
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (11):