Remarkably efficient and stable Ni/Y2O3 catalysts for CO2 methanation: Effect of citric acid addition

被引:99
|
作者
Li, Yingying [1 ]
Men, Yong [1 ]
Liu, Shuang [1 ]
Wang, Jinguo [1 ]
Wang, Kang [1 ]
Tang, Yuhan [1 ]
An, Wei [1 ]
Pan, Xiaoli [2 ]
Li, Lin [2 ]
机构
[1] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, CAS Key Lab Sci & Technol Appl Catalysis, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; methanation; Ni/Y2O3; catalysts; Citric acid; Ni particle size; Reaction intermediates; Charge transfer; CARBON-DIOXIDE METHANATION; RU/TIO2; CATALYSTS; NI CATALYSTS; SUPPORT INTERACTIONS; HYDROGEN-PRODUCTION; LOW-TEMPERATURE; METAL; STABILITY; SURFACE; PARTICLE;
D O I
10.1016/j.apcatb.2021.120206
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Citric acid has been investigated for preparing the highly dispersed nickel catalysts on Y2O3 support. A highly enhanced methanation activity with the high CO2 conversion of 92 % and CH4 selectivity of 100 % was obtained over Ni/Y2O3 with optimum addition of citric acid at 350 degrees C. The citric acid additives during the preparation are found to influence the size of nickel nanoparticles and the interaction of metal and support, as estimated by various techniques, which, in turn, to correlated with the catalytic performance. In situ DRIFTS spectra further indicate the importance of small Ni particles on formation of carbonates and formate species as key intermediates and the subsequent hydrogenation of those species into methane. This study proposes that the Y-O-Ni interfacial structure formed by the strong Ni and Y2O3 interaction at high citric acid addition is of prime importance for the formation of methane, benefiting from the more abundant basic sites and metallic Ni to enable CO2 activation and hydrogenation of key intermediates by effective H-2 dissociation respectively. This work provides a new design strategy for developing highly efficient composite CO2 methanation catalysts by control of the metal particle size and charge transfer via metal/support interface.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation
    Takano, H.
    Kirihata, Y.
    Izumiya, K.
    Kumagai, N.
    Habazaki, H.
    Hashimoto, K.
    APPLIED SURFACE SCIENCE, 2016, 388 : 653 - 663
  • [42] CO and CO2 Methanation Over Ni/SiC and Ni/SiO2 Catalysts
    Thien An Le
    Jong Kyu Kang
    Eun Duck Park
    Topics in Catalysis, 2018, 61 : 1537 - 1544
  • [43] CO and CO2 Methanation Over Ni/SiC and Ni/SiO2 Catalysts
    Thien An Le
    Kang, Jong Kyu
    Park, Eun Duck
    TOPICS IN CATALYSIS, 2018, 61 (15-17) : 1537 - 1544
  • [44] Effect of addition of CaO on Ni/Al2O3 catalysts over CO2 reforming of methane
    Quincoces, CE
    Dicundo, S
    Alvarez, AM
    González, MG
    MATERIALS LETTERS, 2001, 50 (01) : 21 - 27
  • [45] Effect of the ZrO2-Al2O3 solid solution on the performance of Ni/ZrO2-Al2O3 catalysts for CO2 methanation
    Chang, Shuai
    Na, Wei
    Zhang, Jiaqi
    Lin, Lina
    Gao, Wengui
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (46) : 21557 - 21568
  • [46] Preparation of highly active and stable nanostructured Ni-Cr2O3 catalysts for hydrogen purification via CO2 methanation reaction
    Gholami, Samane
    Alavi, Seyed Mehdi
    Rezaei, Mehran
    JOURNAL OF THE ENERGY INSTITUTE, 2021, 95 : 132 - 142
  • [47] Synthesis of nanocrystalline mesoporous Ni/Al2O3-SiO2 catalysts for CO2 methanation reaction
    Moghaddam, Shima Valinejad
    Rezaei, Mehran
    Meshkani, Fereshteh
    Daroughegi, Reihaneh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (41) : 19038 - 19046
  • [48] Preparation of Co-Mo/B2O3/Al2O3 catalysts for hydrodesulfurization: Effect of citric acid addition
    Rinaldi, Nino
    Usman
    Al-Dalama, Khalida
    Kubota, Takeshi
    Okamoto, Yasuaki
    APPLIED CATALYSIS A-GENERAL, 2009, 360 (02) : 130 - 136
  • [49] On the deactivation of Ni-Al catalysts in CO2 methanation
    Ewald, Stefan
    Kolbeck, Michael
    Kratky, Tim
    Wolf, Moritz
    Hinrichsen, Olaf
    APPLIED CATALYSIS A-GENERAL, 2019, 570 : 376 - 386
  • [50] Carbon-Encapsulated Ni Catalysts for CO2 Methanation
    Kim, Hye Jeong
    Kim, Seung Bo
    Kim, Dong Hyun
    Youn, Jae-Rang
    Kim, Min-Jae
    Jeon, Sang Goo
    Lee, Gyoung-Ja
    Lee, Kyubock
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2021, 31 (09): : 525 - 531