Optimal process design with model parameter uncertainty and process variability

被引:73
|
作者
Rooney, WC [1 ]
Biegler, LT [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
关键词
D O I
10.1002/aic.690490214
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Optimal design under unknown information is a key task in process systems engineering. This study considers formulations that incorporate two types of unknown input parameters, uncertain model parameters, and variable process parameters. In the former case, a process must be designed that is feasible over the entire domain of uncertain parameters, while in the latter case, control variables can be adjusted during process operation to compensate for variable process parameters. To address this problem we extend the two-stage formulation for design under uncertainty and derive new formulations for the multiperiod and feasibility problems. Moreover, to simplify the feasibility problem in the two-stage algorithm, we also introduce a KS constraint aggregation function and derive a single, smooth nonlinear program that approximates the feasibility problem. Three case studies are presented to demonstrate the proposed approach.
引用
收藏
页码:438 / 449
页数:12
相关论文
共 50 条
  • [31] DESIGN OF OPTIMAL EVACUATION MODEL FOR CONGESTION PROCESS IN TOURISM AREA
    Liang, Yezhang
    INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2018, 80 (01) : 71 - 71
  • [32] THE OPTIMAL STOPPING PROBLEM OF A CONTINUOUS PARAMETER PROCESS
    金治明
    高校应用数学学报A辑, 1992, (01) : 19 - 31
  • [33] OPTIMAL INPUTS FOR NONLINEAR PROCESS PARAMETER ESTIMATION
    KALABA, RE
    SPINGARN, K
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1974, AE10 (03) : 339 - 345
  • [34] Robust Parameter Design of an EDM Process
    Al-Ghamdi, Khalid A.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2013, 29 (06) : 921 - 934
  • [35] Integrated parameter and tolerance design based on a multivariate Gaussian process model
    Feng, Zebiao
    Wang, Jianjun
    Ma, Yan
    Ma, Yizhong
    ENGINEERING OPTIMIZATION, 2021, 53 (08) : 1349 - 1368
  • [36] Robust parameter design of multiple responses based on Gaussian process model
    Zhai C.
    Wang J.
    Feng Z.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (12): : 3683 - 3693
  • [37] THE OPTIMAL DESIGN OF PRESSURE SWING ADSORPTION PROCESS OF AIR OXYGEN ENRICHMENT UNDER UNCERTAINTY
    Akulinin, E. I.
    Golubyatnikov, O. O.
    Dvoretsky, D. S.
    Dvoretsky, S. I.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2020, 13 (02): : 5 - 16
  • [38] Optimal process and control design under uncertainty: A methodology with robust feasibility and stability analyses
    Trainor, M.
    Giannakeas, V.
    Kiss, C.
    Ricardez-Sandoval, L. A.
    CHEMICAL ENGINEERING SCIENCE, 2013, 104 : 1065 - 1080
  • [39] Optimal intervention for an epidemic model under parameter uncertainty
    Clancy, Damian
    Green, Nathan
    MATHEMATICAL BIOSCIENCES, 2007, 205 (02) : 297 - 314
  • [40] INTERNAL MODEL CONTROL AND PROCESS UNCERTAINTY - MAPPING UNCERTAINTY REGIONS FOR SISO CONTROLLER-DESIGN
    LAUGHLIN, DL
    JORDAN, KG
    MORARI, M
    INTERNATIONAL JOURNAL OF CONTROL, 1986, 44 (06) : 1675 - 1698